Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nature ; 595(7866): 181-188, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194044

RESUMO

Computational social science is more than just large repositories of digital data and the computational methods needed to construct and analyse them. It also represents a convergence of different fields with different ways of thinking about and doing science. The goal of this Perspective is to provide some clarity around how these approaches differ from one another and to propose how they might be productively integrated. Towards this end we make two contributions. The first is a schema for thinking about research activities along two dimensions-the extent to which work is explanatory, focusing on identifying and estimating causal effects, and the degree of consideration given to testing predictions of outcomes-and how these two priorities can complement, rather than compete with, one another. Our second contribution is to advocate that computational social scientists devote more attention to combining prediction and explanation, which we call integrative modelling, and to outline some practical suggestions for realizing this goal.


Assuntos
Simulação por Computador , Ciência de Dados/métodos , Previsões/métodos , Modelos Teóricos , Ciências Sociais/métodos , Objetivos , Humanos
2.
Nat Rev Neurosci ; 18(2): 115-126, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28053326

RESUMO

Functional neuroimaging techniques have transformed our ability to probe the neurobiological basis of behaviour and are increasingly being applied by the wider neuroscience community. However, concerns have recently been raised that the conclusions that are drawn from some human neuroimaging studies are either spurious or not generalizable. Problems such as low statistical power, flexibility in data analysis, software errors and a lack of direct replication apply to many fields, but perhaps particularly to functional MRI. Here, we discuss these problems, outline current and suggested best practices, and describe how we think the field should evolve to produce the most meaningful and reliable answers to neuroscientific questions.


Assuntos
Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Neuroimagem Funcional/estatística & dados numéricos , Neuroimagem Funcional/tendências , Humanos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Imageamento por Ressonância Magnética/tendências , Guias de Prática Clínica como Assunto/normas , Reprodutibilidade dos Testes , Software/normas , Estatística como Assunto
3.
Behav Brain Sci ; 45: e1, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33342451

RESUMO

Most theories and hypotheses in psychology are verbal in nature, yet their evaluation overwhelmingly relies on inferential statistical procedures. The validity of the move from qualitative to quantitative analysis depends on the verbal and statistical expressions of a hypothesis being closely aligned - that is, that the two must refer to roughly the same set of hypothetical observations. Here, I argue that many applications of statistical inference in psychology fail to meet this basic condition. Focusing on the most widely used class of model in psychology - the linear mixed model - I explore the consequences of failing to statistically operationalize verbal hypotheses in a way that respects researchers' actual generalization intentions. I demonstrate that although the "random effect" formalism is used pervasively in psychology to model intersubject variability, few researchers accord the same treatment to other variables they clearly intend to generalize over (e.g., stimuli, tasks, or research sites). The under-specification of random effects imposes far stronger constraints on the generalizability of results than most researchers appreciate. Ignoring these constraints can dramatically inflate false-positive rates, and often leads researchers to draw sweeping verbal generalizations that lack a meaningful connection to the statistical quantities they are putatively based on. I argue that failure to take the alignment between verbal and statistical expressions seriously lies at the heart of many of psychology's ongoing problems (e.g., the replication crisis), and conclude with a discussion of several potential avenues for improvement.


Assuntos
Intenção , Psicologia , Humanos , Psicologia/métodos
4.
Cereb Cortex ; 28(10): 3414-3428, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968758

RESUMO

Extensive fMRI study of human lateral frontal cortex (LFC) has yet to yield a consensus mapping between discrete anatomy and psychological states, partly due to the difficulty of inferring mental states from brain activity. Despite this, there have been few large-scale efforts to map the full range of psychological states across the entirety of LFC. Here, we used a data-driven approach to generate a comprehensive functional-anatomical mapping of LFC from 11 406 neuroimaging studies. We identified putatively separable LFC regions on the basis of whole-brain co-activation, revealing 14 clusters organized into 3 whole-brain networks. Next, we generated functional preference profiles by using multivariate classification to identify the psychological states that best predicted activity within each cluster. We observed large functional differences between networks, suggesting brain networks support distinct modes of processing. Within each network, however, we observed relatively low functional specificity, suggesting discrete psychological states are not strongly localized to individual regions; instead, our results are consistent with the view that individual LFC regions work as part of distributed networks to give rise to flexible behavior. Collectively, our results provide a comprehensive synthesis of a diverse neuroimaging literature using relatively unbiased data-driven methods.


Assuntos
Lobo Frontal/fisiologia , Mapeamento Encefálico , Bases de Dados Factuais , Lobo Frontal/diagnóstico por imagem , Humanos , Informática , Imageamento por Ressonância Magnética , Rede Nervosa/citologia , Rede Nervosa/diagnóstico por imagem , Vias Neurais/fisiologia , Neuroimagem
5.
Proc Natl Acad Sci U S A ; 113(7): 1907-12, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831091

RESUMO

Decades of animal and human neuroimaging research have identified distinct, but overlapping, striatal zones, which are interconnected with separable corticostriatal circuits, and are crucial for the organization of functional systems. Despite continuous efforts to subdivide the human striatum based on anatomical and resting-state functional connectivity, characterizing the different psychological processes related to each zone remains a work in progress. Using an unbiased, data-driven approach, we analyzed large-scale coactivation data from 5,809 human imaging studies. We (i) identified five distinct striatal zones that exhibited discrete patterns of coactivation with cortical brain regions across distinct psychological processes and (ii) identified the different psychological processes associated with each zone. We found that the reported pattern of cortical activation reliably predicted which striatal zone was most strongly activated. Critically, activation in each functional zone could be associated with distinct psychological processes directly, rather than inferred indirectly from psychological functions attributed to associated cortices. Consistent with well-established findings, we found an association of the ventral striatum (VS) with reward processing. Confirming less well-established findings, the VS and adjacent anterior caudate were associated with evaluating the value of rewards and actions, respectively. Furthermore, our results confirmed a sometimes overlooked specialization of the posterior caudate nucleus for executive functions, often considered the exclusive domain of frontoparietal cortical circuits. Our findings provide a precise functional map of regional specialization within the human striatum, both in terms of the differential cortical regions and psychological functions associated with each striatal zone.


Assuntos
Corpo Estriado/fisiologia , Processos Mentais , Humanos , Idioma , Desempenho Psicomotor , Comportamento Social
6.
PLoS Comput Biol ; 13(10): e1005649, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29059185

RESUMO

A central goal of cognitive neuroscience is to decode human brain activity-that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive-that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model-Generalized Correspondence Latent Dirichlet Allocation-that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to "seed" decoder priors with arbitrary images and text-enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Cognição , Processamento de Imagem Assistida por Computador/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos
7.
PLoS Comput Biol ; 13(3): e1005209, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278228

RESUMO

The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.


Assuntos
Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Sistemas de Informação em Radiologia/organização & administração , Software , Interface Usuário-Computador , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos
8.
J Neurosci ; 36(24): 6553-62, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307242

RESUMO

UNLABELLED: The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2-4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies. SIGNIFICANCE STATEMENT: Activation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex using relatively unbiased data-driven methods. This approach revealed three distinct zones that differed substantially in function, each of which were further subdivided into 2-4 smaller subregions that showed additional functional variation. Each individual region was recruited by multiple psychological states, suggesting subregions of medial frontal cortex are functionally heterogeneous.


Assuntos
Mapeamento Encefálico , Lobo Frontal/fisiologia , Vias Neurais/fisiologia , Lobo Frontal/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Oxigênio/sangue
9.
Annu Rev Psychol ; 67: 587-612, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26393866

RESUMO

A major goal of cognitive neuroscience is to delineate how brain systems give rise to mental function. Here we review the increasingly large role informatics-driven approaches are playing in such efforts. We begin by reviewing a number of challenges conventional neuroimaging approaches face in trying to delineate brain-cognition mappings--for example, the difficulty in establishing the specificity of postulated associations. Next, we demonstrate how these limitations can potentially be overcome using complementary approaches that emphasize large-scale analysis--including meta-analytic methods that synthesize hundreds or thousands of studies at a time; latent-variable approaches that seek to extract structure from data in a bottom-up manner; and predictive modeling approaches capable of quantitatively inferring mental states from patterns of brain activity. We highlight the underappreciated but critical role for formal cognitive ontologies in helping to clarify, refine, and test theories of brain and cognitive function. Finally, we conclude with a speculative discussion of what future informatics developments may hold for cognitive neuroscience.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Cognição/fisiologia , Neurociência Cognitiva , Neuroimagem , Humanos , Metanálise como Assunto
10.
Neuroimage ; 124(Pt B): 1242-1244, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25869863

RESUMO

NeuroVault.org is dedicated to storing outputs of analyses in the form of statistical maps, parcellations and atlases, a unique strategy that contrasts with most neuroimaging repositories that store raw acquisition data or stereotaxic coordinates. Such maps are indispensable for performing meta-analyses, validating novel methodology, and deciding on precise outlines for regions of interest (ROIs). NeuroVault is open to maps derived from both healthy and clinical populations, as well as from various imaging modalities (sMRI, fMRI, EEG, MEG, PET, etc.). The repository uses modern web technologies such as interactive web-based visualization, cognitive decoding, and comparison with other maps to provide researchers with efficient, intuitive tools to improve the understanding of their results. Each dataset and map is assigned a permanent Universal Resource Locator (URL), and all of the data is accessible through a REST Application Programming Interface (API). Additionally, the repository supports the NIDM-Results standard and has the ability to parse outputs from popular FSL and SPM software packages to automatically extract relevant metadata. This ease of use, modern web-integration, and pioneering functionality holds promise to improve the workflow for making inferences about and sharing whole-brain statistical maps.


Assuntos
Mapeamento Encefálico/estatística & dados numéricos , Bases de Dados Factuais , Disseminação de Informação , Acesso à Informação , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Neuroimagem
11.
Neuroimage ; 91: 324-35, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24486981

RESUMO

A growing number of studies suggest the brain's "default network" becomes engaged when individuals recall their personal past or simulate their future. Recent reports of heterogeneity within the network raise the possibility that these autobiographical processes comprised of multiple component processes, each supported by distinct functional-anatomic subsystems. We previously hypothesized that a medial temporal subsystem contributes to autobiographical memory and future thought by enabling individuals to retrieve prior information and bind this information into a mental scene. Conversely, a dorsal medial subsystem was proposed to support social-reflective aspects of autobiographical thought, allowing individuals to reflect on the mental states of one's self and others (i.e. "mentalizing"). To test these hypotheses, we first examined activity in the default network subsystems as participants performed two commonly employed tasks of episodic retrieval and mentalizing. In a subset of participants, relationships among task-evoked regions were examined at rest, in the absence of an overt task. Finally, large-scale fMRI meta-analyses were conducted to identify brain regions that most strongly predicted the presence of episodic retrieval and mentalizing, and these results were compared to meta-analyses of autobiographical tasks. Across studies, laboratory-based episodic retrieval tasks were preferentially linked to the medial temporal subsystem, while mentalizing tasks were preferentially linked to the dorsal medial subsystem. In turn, autobiographical tasks engaged aspects of both subsystems. These results suggest the default network is a heterogeneous brain system whose subsystems support distinct component processes of autobiographical thought.


Assuntos
Encéfalo/fisiologia , Memória Episódica , Rememoração Mental/fisiologia , Teoria da Mente/fisiologia , Adulto , Algoritmos , Simulação por Computador , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Método de Monte Carlo , Oxigênio/sangue , Desempenho Psicomotor/fisiologia , Reconhecimento Psicológico/fisiologia , Repressão Psicológica , Descanso/fisiologia , Software , Adulto Jovem
12.
Nat Methods ; 8(8): 665-70, 2011 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-21706013

RESUMO

The rapid growth of the literature on neuroimaging in humans has led to major advances in our understanding of human brain function but has also made it increasingly difficult to aggregate and synthesize neuroimaging findings. Here we describe and validate an automated brain-mapping framework that uses text-mining, meta-analysis and machine-learning techniques to generate a large database of mappings between neural and cognitive states. We show that our approach can be used to automatically conduct large-scale, high-quality neuroimaging meta-analyses, address long-standing inferential problems in the neuroimaging literature and support accurate 'decoding' of broad cognitive states from brain activity in both entire studies and individual human subjects. Collectively, our results have validated a powerful and generative framework for synthesizing human neuroimaging data on an unprecedented scale.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Mineração de Dados/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Linguagem Natural , Publicações Periódicas como Assunto , Software , Humanos , Internet
13.
Cereb Cortex ; 23(3): 739-49, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22437053

RESUMO

Recent work has indicated that the insula may be involved in goal-directed cognition, switching between networks, and the conscious awareness of affect and somatosensation. However, these findings have been limited by the insula's remarkably high base rate of activation and considerable functional heterogeneity. The present study used a relatively unbiased data-driven approach combining resting-state connectivity-based parcellation of the insula with large-scale meta-analysis to understand how the insula is anatomically organized based on functional connectivity patterns as well as the consistency and specificity of the associated cognitive functions. Our findings support a tripartite subdivision of the insula and reveal that the patterns of functional connectivity in the resting-state analysis appear to be relatively conserved across tasks in the meta-analytic coactivation analysis. The function of the networks was meta-analytically "decoded" using the Neurosynth framework and revealed that while the dorsoanterior insula is more consistently involved in human cognition than ventroanterior and posterior networks, each parcellated network is specifically associated with a distinct function. Collectively, this work suggests that the insula is instrumental in integrating disparate functional systems involved in processing affect, sensory-motor processing, and general cognition and is well suited to provide an interface between feelings, cognition, and action.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Cognição/fisiologia , Vias Neurais/fisiologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
15.
J Neurosci ; 32(26): 8988-99, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22745498

RESUMO

Control of thought and behavior is fundamental to human intelligence. Evidence suggests a frontoparietal brain network implements such cognitive control across diverse contexts. We identify a mechanism--global connectivity--by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region's activity was found to predict performance in a high control demand working memory task and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the frontoparietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brainwide influence that facilitates the ability to implement control processes central to human intelligence.


Assuntos
Mapeamento Encefálico , Cognição/fisiologia , Inteligência/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Individualidade , Testes de Inteligência , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/irrigação sanguínea , Testes Neuropsicológicos , Oxigênio/sangue , Valor Preditivo dos Testes , Córtex Pré-Frontal/irrigação sanguínea , Adulto Jovem
16.
PLoS Comput Biol ; 8(10): e1002707, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071428

RESUMO

Neuroimaging research has largely focused on the identification of associations between brain activation and specific mental functions. Here we show that data mining techniques applied to a large database of neuroimaging results can be used to identify the conceptual structure of mental functions and their mapping to brain systems. This analysis confirms many current ideas regarding the neural organization of cognition, but also provides some new insights into the roles of particular brain systems in mental function. We further show that the same methods can be used to identify the relations between mental disorders. Finally, we show that these two approaches can be combined to empirically identify novel relations between mental disorders and mental functions via their common involvement of particular brain networks. This approach has the potential to discover novel endophenotypes for neuropsychiatric disorders and to better characterize the structure of these disorders and the relations between them.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Cognição/fisiologia , Transtornos Mentais/fisiopatologia , Processos Mentais/fisiologia , Adulto , Análise por Conglomerados , Biologia Computacional , Mineração de Dados , Humanos , Modelos Neurológicos , Fenótipo , Distribuição Aleatória
17.
Neurobiol Aging ; 118: 55-65, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35878565

RESUMO

Previous literature has focused on predicting a diagnostic label from structural brain imaging. Since subtle changes in the brain precede a cognitive decline in healthy and pathological aging, our study predicts future decline as a continuous trajectory instead. Here, we tested whether baseline multimodal neuroimaging data improve the prediction of future cognitive decline in healthy and pathological aging. Nonbrain data (demographics, clinical, and neuropsychological scores), structural MRI, and functional connectivity data from OASIS-3 (N = 662; age = 46-96 years) were entered into cross-validated multitarget random forest models to predict future cognitive decline (measured by CDR and MMSE), on average 5.8 years into the future. The analysis was preregistered, and all analysis code is publicly available. Combining non-brain with structural data improved the continuous prediction of future cognitive decline (best test-set performance: R2 = 0.42). Cognitive performance, daily functioning, and subcortical volume drove the performance of our model. Including functional connectivity did not improve predictive accuracy. In the future, the prognosis of age-related cognitive decline may enable earlier and more effective individualized cognitive, pharmacological, and behavioral interventions.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Neuroimagem
18.
Elife ; 112022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040302

RESUMO

Functional magnetic resonance imaging (fMRI) has revolutionized cognitive neuroscience, but methodological barriers limit the generalizability of findings from the lab to the real world. Here, we present Neuroscout, an end-to-end platform for analysis of naturalistic fMRI data designed to facilitate the adoption of robust and generalizable research practices. Neuroscout leverages state-of-the-art machine learning models to automatically annotate stimuli from dozens of fMRI studies using naturalistic stimuli-such as movies and narratives-allowing researchers to easily test neuroscientific hypotheses across multiple ecologically-valid datasets. In addition, Neuroscout builds on a robust ecosystem of open tools and standards to provide an easy-to-use analysis builder and a fully automated execution engine that reduce the burden of reproducible research. Through a series of meta-analytic case studies, we validate the automatic feature extraction approach and demonstrate its potential to support more robust fMRI research. Owing to its ease of use and a high degree of automation, Neuroscout makes it possible to overcome modeling challenges commonly arising in naturalistic analysis and to easily scale analyses within and across datasets, democratizing generalizable fMRI research.


Assuntos
Ecossistema , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos
19.
Behav Res Methods ; 43(1): 193-200, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21287121

RESUMO

Text-analytic methods have become increasingly popular in cognitive science for understanding differences in semantic structure between documents. However, such methods have not been widely used in other disciplines. With the aim of disseminating these approaches, we introduce a text-analytic technique (Contrast Analysis of Semantic Similarity, CASS, www.casstools.org), based on the BEAGLE semantic space model (Jones & Mewhort, Psychological Review, 114, 1-37, 2007) and add new features to test between-corpora differences in semantic associations (e.g., the association between democrat and good, compared to democrat and bad). By analyzing television transcripts from cable news from a 12-month period, we reveal significant differences in political bias between television channels (liberal to conservative: MSNBC, CNN, FoxNews) and find expected differences between newscasters (Colmes, Hannity). Compared to existing measures of media bias, our measure has higher reliability. CASS can be used to investigate semantic structure when exploring any topic (e.g., self-esteem or stereotyping) that affords a large text-based database.


Assuntos
Meios de Comunicação , Política , Semântica , Algoritmos , Atitude , Interpretação Estatística de Dados , Humanos , Reprodutibilidade dos Testes , Software
20.
Artigo em Inglês | MEDLINE | ID: mdl-38737598

RESUMO

Consensus on standards for evaluating models and theories is an integral part of every science. Nonetheless, in psychology, relatively little focus has been placed on defining reliable communal metrics to assess model performance. Evaluation practices are often idiosyncratic and are affected by a number of shortcomings (e.g., failure to assess models' ability to generalize to unseen data) that make it difficult to discriminate between good and bad models. Drawing inspiration from fields such as machine learning and statistical genetics, we argue in favor of introducing common benchmarks as a means of overcoming the lack of reliable model evaluation criteria currently observed in psychology. We discuss a number of principles benchmarks should satisfy to achieve maximal utility, identify concrete steps the community could take to promote the development of such benchmarks, and address a number of potential pitfalls and concerns that may arise in the course of implementation. We argue that reaching consensus on common evaluation benchmarks will foster cumulative progress in psychology and encourage researchers to place heavier emphasis on the practical utility of scientific models.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa