Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 139(2): 234-44, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19837029

RESUMO

The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities.


Assuntos
Insetos/fisiologia , Mamíferos/fisiologia , Paladar , Animais , Células Quimiorreceptoras/fisiologia , Papilas Gustativas/fisiologia , Língua/citologia , Língua/fisiologia
2.
Nature ; 517(7534): 373-6, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25383521

RESUMO

The mammalian taste system is responsible for sensing and responding to the five basic taste qualities: sweet, sour, bitter, salty and umami. Previously, we showed that each taste is detected by dedicated taste receptor cells (TRCs) on the tongue and palate epithelium. To understand how TRCs transmit information to higher neural centres, we examined the tuning properties of large ensembles of neurons in the first neural station of the gustatory system. Here, we generated and characterized a collection of transgenic mice expressing a genetically encoded calcium indicator in central and peripheral neurons, and used a gradient refractive index microendoscope combined with high-resolution two-photon microscopy to image taste responses from ganglion neurons buried deep at the base of the brain. Our results reveal fine selectivity in the taste preference of ganglion neurons; demonstrate a strong match between TRCs in the tongue and the principal neural afferents relaying taste information to the brain; and expose the highly specific transfer of taste information between taste cells and the central nervous system.


Assuntos
Gânglio Geniculado/citologia , Neurônios/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Língua/fisiologia , Animais , Cálcio/metabolismo , Camundongos , Camundongos Transgênicos , Papilas Gustativas/citologia , Papilas Gustativas/fisiologia , Língua/citologia , Língua/inervação
3.
Nature ; 464(7286): 297-301, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20107438

RESUMO

Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.


Assuntos
Sódio/fisiologia , Papilas Gustativas/fisiologia , Paladar/genética , Animais , Comportamento/fisiologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Camundongos , Camundongos Transgênicos , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo
4.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645252

RESUMO

Pain hypersensitivity arises from the plasticity of peripheral and spinal somatosensory neurons, which modifies nociceptive input to the brain and alters pain perception. We utilized chronic calcium imaging of spinal dorsal horn neurons to determine how the representation of somatosensory stimuli in the anterolateral tract, the principal pathway transmitting nociceptive signals to the brain, changes between distinct pain states. In healthy conditions, we identify stable, narrowly tuned outputs selective for cooling or warming, and a neuronal ensemble activated by intense/noxious thermal and mechanical stimuli. Induction of an acute peripheral sensitization with capsaicin selectively and transiently retunes nociceptive output neurons to encode low-intensity stimuli. In contrast, peripheral nerve injury-induced neuropathic pain results in a persistent suppression of innocuous spinal outputs coupled with activation of a normally silent population of high-threshold neurons. These results demonstrate the differential modulation of specific spinal outputs to the brain during nociceptive and neuropathic pain states.

5.
Pain ; 163(12): 2326-2336, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35543646

RESUMO

ABSTRACT: The lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that provides automated, quantitative, and objective measures of naturalistic rodent behavior in an observer-independent and unbiased fashion. The technology records freely behaving mice, in the dark, over extended periods for continuous acquisition of 2 parallel video data streams: (1) near-infrared frustrated total internal reflection for detecting the degree, force, and timing of surface contact and (2) simultaneous ongoing video graphing of whole-body pose. Using machine vision and machine learning, we automatically extract and quantify behavioral features from these data to reveal moment-by-moment changes that capture the internal pain state of rodents in multiple pain models. We show that these voluntary pain-related behaviors are reversible by analgesics and that analgesia can be automatically and objectively differentiated from sedation. Finally, we used this approach to generate a paw luminance ratio measure that is sensitive in capturing dynamic mechanical hypersensitivity over a period and scalable for high-throughput preclinical analgesic efficacy assessment.


Assuntos
Analgesia , Dor , Camundongos , Animais , Dor/diagnóstico , Dor/tratamento farmacológico , Manejo da Dor , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Medição da Dor
6.
Elife ; 102021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473051

RESUMO

Videos of animal behavior are used to quantify researcher-defined behaviors of interest to study neural function, gene mutations, and pharmacological therapies. Behaviors of interest are often scored manually, which is time-consuming, limited to few behaviors, and variable across researchers. We created DeepEthogram: software that uses supervised machine learning to convert raw video pixels into an ethogram, the behaviors of interest present in each video frame. DeepEthogram is designed to be general-purpose and applicable across species, behaviors, and video-recording hardware. It uses convolutional neural networks to compute motion, extract features from motion and images, and classify features into behaviors. Behaviors are classified with above 90% accuracy on single frames in videos of mice and flies, matching expert-level human performance. DeepEthogram accurately predicts rare behaviors, requires little training data, and generalizes across subjects. A graphical interface allows beginning-to-end analysis without end-user programming. DeepEthogram's rapid, automatic, and reproducible labeling of researcher-defined behaviors of interest may accelerate and enhance supervised behavior analysis. Code is available at: https://github.com/jbohnslav/deepethogram.


Assuntos
Asseio Animal , Processamento de Imagem Assistida por Computador , Atividade Motora , Redes Neurais de Computação , Comportamento Social , Aprendizado de Máquina Supervisionado , Gravação em Vídeo , Animais , Drosophila melanogaster , Feminino , Humanos , Cinética , Masculino , Camundongos Endogâmicos C57BL , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Caminhada
7.
Neuron ; 92(5): 1079-1092, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27840000

RESUMO

Perception of the thermal environment begins with the activation of peripheral thermosensory neurons innervating the body surface. To understand how temperature is represented in vivo, we used genetically encoded calcium indicators to measure temperature-evoked responses in hundreds of neurons across the trigeminal ganglion. Our results show how warm, hot, and cold stimuli are represented by distinct population responses, uncover unique functional classes of thermosensory neurons mediating heat and cold sensing, and reveal the molecular logic for peripheral warmth sensing. Next, we examined how the peripheral somatosensory system is functionally reorganized to produce altered perception of the thermal environment after injury. We identify fundamental transformations in sensory coding, including the silencing and recruitment of large ensembles of neurons, providing a cellular basis for perceptual changes in temperature sensing, including heat hypersensitivity, persistence of heat perception, cold hyperalgesia, and cold analgesia.


Assuntos
Queimaduras/metabolismo , Hiperalgesia/metabolismo , Hiperestesia/metabolismo , Neurônios/metabolismo , Canais de Cátion TRPV/metabolismo , Sensação Térmica/fisiologia , Gânglio Trigeminal/citologia , Animais , Queimaduras/fisiopatologia , Temperatura Baixa , Temperatura Alta , Hiperalgesia/fisiopatologia , Hiperestesia/fisiopatologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal , Neurônios/fisiologia , Canal de Cátion TRPA1 , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/fisiologia
8.
Science ; 326(5951): 443-5, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19833970

RESUMO

Carbonated beverages are commonly available and immensely popular, but little is known about the cellular and molecular mechanisms underlying the perception of carbonation in the mouth. In mammals, carbonation elicits both somatosensory and chemosensory responses, including activation of taste neurons. We have identified the cellular and molecular substrates for the taste of carbonation. By targeted genetic ablation and the silencing of synapses in defined populations of taste receptor cells, we demonstrated that the sour-sensing cells act as the taste sensors for carbonation, and showed that carbonic anhydrase 4, a glycosylphosphatidylinositol-anchored enzyme, functions as the principal CO2 taste sensor. Together, these studies reveal the basis of the taste of carbonation as well as the contribution of taste cells in the orosensory response to CO2.


Assuntos
Dióxido de Carbono/metabolismo , Bebidas Gaseificadas , Anidrase Carbônica IV/metabolismo , Papilas Gustativas/fisiologia , Percepção Gustatória , Paladar/fisiologia , Potenciais de Ação , Animais , Benzolamida/farmacologia , Bicarbonatos/metabolismo , Canais de Cálcio/metabolismo , Anidrase Carbônica IV/antagonistas & inibidores , Anidrase Carbônica IV/genética , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Nervo da Corda do Tímpano/fisiologia , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Prótons , Receptores de Superfície Celular/metabolismo , Papilas Gustativas/enzimologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa