Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054791

RESUMO

Spinal cord injury (SCI) produces paralysis and a unique form of neurogenic disuse osteoporosis that dramatically increases fracture risk at the distal femur and proximal tibia. This bone loss is driven by heightened bone resorption and near-absent bone formation during the acute post-SCI recovery phase and by a more traditional high-turnover osteopenia that emerges more chronically, which is likely influenced by the continual neural impairment and musculoskeletal unloading. These observations have stimulated interest in specialized exercise or activity-based physical therapy (ABPT) modalities (e.g., neuromuscular or functional electrical stimulation cycling, rowing, or resistance training, as well as other standing, walking, or partial weight-bearing interventions) that reload the paralyzed limbs and promote muscle recovery and use-dependent neuroplasticity. However, only sparse and relatively inconsistent evidence supports the ability of these physical rehabilitation regimens to influence bone metabolism or to increase bone mineral density (BMD) at the most fracture-prone sites in persons with severe SCI. This review discusses the pathophysiology and cellular/molecular mechanisms that influence bone loss after SCI, describes studies evaluating bone turnover and BMD responses to ABPTs during acute versus chronic SCI, identifies factors that may impact the bone responses to ABPT, and provides recommendations to optimize ABPTs for bone recovery.


Assuntos
Osso e Ossos/patologia , Exercício Físico/fisiologia , Modalidades de Fisioterapia , Traumatismos da Medula Espinal/terapia , Animais , Densidade Óssea , Remodelação Óssea/fisiologia , Osso e Ossos/fisiopatologia , Humanos , Traumatismos da Medula Espinal/fisiopatologia
2.
J Int Neuropsychol Soc ; 27(8): 790-804, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34548116

RESUMO

OBJECTIVE: The purpose of this study was to pilot safety and tolerability of a 1-week aerobic exercise program during the post-acute phase of concussion (14-25 days post-injury) by examining adherence, symptom response, and key functional outcomes (e.g., cognition, mood, sleep, postural stability, and neurocognitive performance) in young adults. METHOD: A randomized, non-blinded pilot clinical trial was performed to compare the effects of aerobic versus non-aerobic exercise (placebo) in concussion patients. The study enrolled three groups: 1) patients with concussion/mild traumatic brain injury (mTBI) randomized to an aerobic exercise intervention performed daily for 1-week, 2) patients with concussion/mTBI randomized to a non-aerobic (stretching and calisthenics) exercise program performed daily for 1-week, and 3) non-injured, no intervention reference group. RESULTS: Mixed-model analysis of variance results indicated a significant decrease in symptom severity scores from pre- to post-intervention (mean difference = -7.44, 95% CI [-12.37, -2.20]) for both concussion groups. However, the pre- to post-change was not different between groups. Secondary outcomes all showed improvements by post-intervention, but no differences in trajectory between the groups. By three months post-injury, all outcomes in the concussion groups were within ranges of the non-injured reference group. CONCLUSIONS: Results from this study indicate that the feasibility and tolerability of administering aerobic exercise via stationary cycling in the post-acute time frame following post-concussion (14-25 days) period are tentatively favorable. Aerobic exercise does not appear to negatively impact recovery trajectories of neurobehavioral outcomes; however, tolerability may be poorer for patients with high symptom burden.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Síndrome Pós-Concussão , Traumatismos em Atletas/complicações , Exercício Físico , Terapia por Exercício , Humanos , Síndrome Pós-Concussão/etiologia , Síndrome Pós-Concussão/terapia , Adulto Jovem
3.
J Neurosci Res ; 98(5): 843-868, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31797423

RESUMO

Loading and testosterone may influence musculoskeletal recovery after spinal cord injury (SCI). Our objectives were to determine (a) the acute effects of bodyweight-supported treadmill training (TM) on hindlimb cancellous bone microstructure and muscle mass in adult rats after severe contusion SCI and (b) whether longer-term TM with adjuvant testosterone enanthate (TE) delivers musculoskeletal benefit. In Study 1, TM (40 min/day, 5 days/week, beginning 1 week postsurgery) did not prevent SCI-induced hindlimb cancellous bone loss after 3 weeks. In Study 2, TM did not attenuate SCI-induced plantar flexor muscles atrophy nor improve locomotor recovery after 4 weeks. In our main study, SCI produced extensive distal femur and proximal tibia cancellous bone deficits, a deleterious slow-to-fast fiber-type transition in soleus, lower muscle fiber cross-sectional area (fCSA), impaired muscle force production, and levator ani/bulbocavernosus (LABC) muscle atrophy after 8 weeks. TE alone (7.0 mg/week) suppressed bone resorption, attenuated cancellous bone loss, constrained the soleus fiber-type transition, and prevented LABC atrophy. In comparison, TE+TM concomitantly suppressed bone resorption and stimulated bone formation after SCI, produced near-complete cancellous bone preservation, prevented the soleus fiber-type transition, attenuated soleus fCSA atrophy, maintained soleus force production, and increased LABC mass. 75% of SCI+TE+TM animals recovered voluntary over-ground hindlimb stepping, while no SCI and only 20% of SCI+TE animals regained stepping ability. Positive associations between testosterone and locomotor function suggest that TE influenced locomotor recovery. In conclusion, short-term TM alone did not improve bone, muscle, or locomotor recovery in adult rats after severe SCI, while longer-term TE+TM provided more comprehensive musculoskeletal benefit than TE alone.


Assuntos
Osso Esponjoso/fisiopatologia , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/reabilitação , Testosterona/uso terapêutico , Animais , Osso Esponjoso/efeitos dos fármacos , Quimioterapia Combinada , Masculino , Músculo Esquelético/efeitos dos fármacos , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Testosterona/administração & dosagem
4.
Calcif Tissue Int ; 104(1): 79-91, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218117

RESUMO

To elucidate mechanisms of bone loss after spinal cord injury (SCI), we evaluated the time-course of cancellous and cortical bone microarchitectural deterioration via microcomputed tomography, measured histomorphometric and circulating bone turnover indices, and characterized the development of whole bone mechanical deficits in a clinically relevant experimental SCI model. 16-weeks-old male Sprague-Dawley rats received T9 laminectomy (SHAM, n = 50) or moderate-severe contusion SCI (n = 52). Outcomes were assessed at 2-weeks, 1-month, 2-months, and 3-months post-surgery. SCI produced immediate sublesional paralysis and persistent hindlimb locomotor impairment. Higher circulating tartrate-resistant acid phosphatase 5b (bone resorption marker) and lower osteoblast bone surface and histomorphometric cancellous bone formation indices were present in SCI animals at 2-weeks post-surgery, suggesting uncoupled cancellous bone turnover. Distal femoral and proximal tibial cancellous bone volume, trabecular thickness, and trabecular number were markedly lower after SCI, with the residual cancellous network exhibiting less trabecular connectivity. Periosteal bone formation indices were lower at 2-weeks and 1-month post-SCI, preceding femoral cortical bone loss and the development of bone mechanical deficits at the distal femur and femoral diaphysis. SCI animals also exhibited lower serum testosterone than SHAM, until 2-months post-surgery, and lower serum leptin throughout. Our moderate-severe contusion SCI model displayed rapid cancellous bone deterioration and more gradual cortical bone loss and development of whole bone mechanical deficits, which likely resulted from a temporal uncoupling of bone turnover, similar to the sequalae observed in the motor-complete SCI population. Low testosterone and/or leptin may contribute to the molecular mechanisms underlying bone deterioration after SCI.


Assuntos
Remodelação Óssea/fisiologia , Reabsorção Óssea/metabolismo , Osteogênese/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Densidade Óssea/fisiologia , Doenças Ósseas Metabólicas/metabolismo , Osso Cortical/metabolismo , Masculino , Ratos Sprague-Dawley
5.
Oral Dis ; 25(4): 1116-1135, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30712276

RESUMO

OBJECTIVES: To determine the extent that zoledronate (ZOL) dose and duration is associated with bisphosphonate-related osteonecrosis of the jaw (BRONJ) prevalence in rice rats with generalized periodontitis (PD), characterize structural and tissue-level features of BRONJ-like lesions in this model, and examine the specific anti-resorptive role of ZOL in BRONJ. MATERIALS AND METHODS: Rice rats (n = 228) consumed high sucrose-casein diet to enhance generalized PD. Groups of rats received 0, 8, 20, 50 or 125 µg/kg IV ZOL/4 weeks encompassing osteoporosis and oncology ZOL doses. Rats from each dose group (n = 9-16) were necropsied after 12, 18, 24 and 30 weeks of treatment. BRONJ-like lesion prevalence and tissue-level features were assessed grossly, histopathologically and by MicroCT. ZOL bone turnover effects were assessed by femoral peripheral quantitative computed tomography, serum bone turnover marker ELISAs and osteoclast immunolabelling. RESULTS: Prevalence of BRONJ-like lesions was significantly associated with (a) ZOL treatment duration, but plateaued at the lowest oncologic dose, and (b) there was a similar dose-related plateau in the systemic anti-resorptive effect of ZOL. ZOL and BRONJ-like lesions also altered the structural and tissue-level features of the jaw. CONCLUSION: The relationship between BRONJ-like lesion prevalence and ZOL dose and duration varies depending on the co- or pre-existing oral risk factor. At clinically relevant doses of ZOL, BRONJ-like lesions are associated with anti-resorptive activity.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/epidemiologia , Conservadores da Densidade Óssea/uso terapêutico , Duração da Terapia , Periodontite/tratamento farmacológico , Ácido Zoledrônico/uso terapêutico , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Relação Dose-Resposta a Droga , Prevalência , Ratos , Sigmodontinae , Ácido Zoledrônico/efeitos adversos
6.
Int J Mol Sci ; 19(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880749

RESUMO

Neuromuscular impairment and reduced musculoskeletal integrity are hallmarks of spinal cord injury (SCI) that hinder locomotor recovery. These impairments are precipitated by the neurological insult and resulting disuse, which has stimulated interest in activity-based physical rehabilitation therapies (ABTs) that promote neuromuscular plasticity after SCI. However, ABT efficacy declines as SCI severity increases. Additionally, many men with SCI exhibit low testosterone, which may exacerbate neuromusculoskeletal impairment. Incorporating testosterone adjuvant to ABTs may improve musculoskeletal recovery and neuroplasticity because androgens attenuate muscle loss and the slow-to-fast muscle fiber-type transition after SCI, in a manner independent from mechanical strain, and promote motoneuron survival. These neuromusculoskeletal benefits are promising, although testosterone alone produces only limited functional improvement in rodent SCI models. In this review, we discuss the (1) molecular deficits underlying muscle loss after SCI; (2) independent influences of testosterone and locomotor training on neuromuscular function and musculoskeletal integrity post-SCI; (3) hormonal and molecular mechanisms underlying the therapeutic efficacy of these strategies; and (4) evidence supporting a multimodal strategy involving ABT with adjuvant testosterone, as a potential means to promote more comprehensive neuromusculoskeletal recovery than either strategy alone.


Assuntos
Exercício Físico , Junção Neuromuscular/efeitos dos fármacos , Traumatismos da Medula Espinal/reabilitação , Testosterona/administração & dosagem , Androgênios/metabolismo , Animais , Estrogênios/metabolismo , Humanos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Junção Neuromuscular/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Testosterona/metabolismo
7.
Am J Physiol Endocrinol Metab ; 308(12): E1035-42, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25898953

RESUMO

The value of testosterone replacement therapy (TRT) for older men is currently a topic of intense debate. While US testosterone prescriptions have tripled in the past decade (9), debate continues over the risks and benefits of TRT. TRT is currently prescribed for older men with either low serum testosterone (T) or low T plus accompanying symptoms of hypogonadism. The normal range for serum testosterone is 300 to 1,000 ng/dl. Serum T ≤ 300 ng/dl is considered to be low, and T ≤ 250 is considered to be frank hypogonadism. Most experts support TRT for older men with frank hypogonadism and symptoms. Treatment for men who simply have low T remains somewhat controversial. TRT is most frequently administered by intramuscular (im) injection of long-acting T esters or transdermally via patch or gel preparations and infrequently via oral administration. TRT produces a number of established benefits in hypogonadal men, including increased muscle mass and strength, decreased fat mass, increased bone mineral density, and improved sexual function, and in some cases those benefits are dose dependent. For example, doses of TRT administered by im injection are typically higher than those administered transdermally, which results in greater musculoskeletal benefits. TRT also produces known risks including development of polycythemia (Hct > 50) in 6% of those treated, decrease in HDL, breast tenderness and enlargement, prostate enlargement, increases in serum PSA, and prostate-related events and may cause suppression of the hypothalamic-pituitary-gonadal axis. Importantly, TRT does not increase the risk of prostate cancer. Putative risks include edema and worsening of sleep apnea. Several recent reports have also indicated that TRT may produce cardiovascular (CV) risks, while others report no risk or even benefit. To address the potential CV risks of TRT, we have recently reported via meta-analysis that oral TRT increases CV risk and suggested that the CV risk profile for im TRT may be better than that for oral or transdermal TRT.


Assuntos
Envelhecimento , Terapia de Reposição Hormonal/métodos , Osteoporose/tratamento farmacológico , Sarcopenia/tratamento farmacológico , Testosterona/administração & dosagem , Testosterona/efeitos adversos , Administração Cutânea , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/efeitos dos fármacos , Humanos , Hipogonadismo/sangue , Hipogonadismo/tratamento farmacológico , Injeções , Masculino , Osteoporose/sangue , Osteoporose/prevenção & controle , Sarcopenia/sangue , Sarcopenia/prevenção & controle , Testosterona/sangue , Resultado do Tratamento
8.
Exerc Sport Sci Rev ; 43(4): 222-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26196865

RESUMO

Androgens and estrogens influence skeletal development and maintenance in males. However, the relative contributions of the circulating sex steroid hormones that originate from testicular/adrenal secretion versus those produced locally in bone via intracrine action require further elucidation. Our novel hypothesis is that testosterone exerts direct protective effects on the adult male skeleton independently of the actions of 5α-reductase or aromatase.


Assuntos
Osso e Ossos/metabolismo , Testosterona/biossíntese , Envelhecimento/metabolismo , Aromatase/metabolismo , Osso e Ossos/enzimologia , Colestenona 5 alfa-Redutase/metabolismo , Di-Hidrotestosterona/metabolismo , Estradiol/biossíntese , Estradiol/metabolismo , Humanos , Masculino , Testosterona/deficiência , Testosterona/metabolismo
9.
Am J Physiol Endocrinol Metab ; 307(5): E456-61, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25074984

RESUMO

Testosterone (T) stimulates erythropoiesis and regulates iron homeostasis. However, it remains unknown whether the (type II) 5α-reduction of T to dihydrotestosterone (DHT) mediates these androgenic effects, as it does in some other tissues. Our purpose was to determine whether inhibition of type II 5α-reductase (via finasteride) alters red blood cell (RBC) production and serum markers of iron homeostasis subsequent to testosterone-enanthate (TE) administration in older hypogonadal men. Sixty men aged ≥60 yr with serum T <300 ng/dl or bioavailable T <70 ng/dl received treatment with TE (125 mg/wk) vs. vehicle paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased RBC count 9%, hematocrit 4%, and hemoglobin 8% while suppressing serum hepcidin 57% (P < 0.001 for all measurements). Most of the aforementioned changes occurred in the first 3 mo of treatment, and finasteride coadministration did not significantly alter any of these effects. TE also reduced serum ferritin 32% (P = 0.002) within 3 mo of treatment initiation without altering iron, transferrin, or transferrin saturation. We conclude that TE stimulates erythropoiesis and alters iron homeostasis independently of the type II 5α-reductase enzyme. These results demonstrate that elevated DHT is not required for androgen-mediated erythropoiesis or for alterations in iron homeostasis that would appear to support iron incorporation into RBCs.


Assuntos
Di-Hidrotestosterona/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Ferro/metabolismo , Testosterona/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Método Duplo-Cego , Interações Medicamentosas , Contagem de Eritrócitos , Ferritinas/sangue , Finasterida/farmacologia , Humanos , Ferro/sangue , Masculino , Pessoa de Meia-Idade , Placebos , Testosterona/farmacologia , Transferrina/análise
10.
Am J Physiol Endocrinol Metab ; 306(4): E433-42, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24326421

RESUMO

Testosterone acts directly at androgen receptors and also exerts potent actions following 5α-reduction to dihydrotestosterone (DHT). Finasteride (type II 5α-reductase inhibitor) lowers DHT and is used to treat benign prostatic hyperplasia. However, it is unknown whether elevated DHT mediates either beneficial musculoskeletal effects or prostate enlargement resulting from higher-than-replacement doses of testosterone. Our purpose was to determine whether administration of testosterone plus finasteride to older hypogonadal men could produce musculoskeletal benefits without prostate enlargement. Sixty men aged ≥60 yr with a serum testosterone concentration of ≤300 ng/dl or bioavailable testosterone ≤70 ng/dl received 52 wk of treatment with testosterone enanthate (TE; 125 mg/wk) vs. vehicle, paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased upper and lower body muscle strength by 8-14% (P = 0.015 to <0.001), fat-free mass 4.04 kg (P = 0.032), lumbar spine bone mineral density (BMD) 4.19% (P < 0.001), and total hip BMD 1.96% (P = 0.024) while reducing total body fat -3.87 kg (P < 0.001) and trunk fat -1.88 kg (P = 0.0051). In the first 3 mo, testosterone increased hematocrit 4.13% (P < 0.001). Coadministration of finasteride did not alter any of these effects. Over 12 mo, testosterone also increased prostate volume 11.4 cm(3) (P = 0.0051), an effect that was completely prevented by finasteride (P = 0.0027). We conclude that a higher-than-replacement TE combined with finasteride significantly increases muscle strength and BMD and reduces body fat without causing prostate enlargement. These results demonstrate that elevated DHT mediates testosterone-induced prostate enlargement but is not required for benefits in musculoskeletal or adipose tissue.


Assuntos
Densidade Óssea/efeitos dos fármacos , Finasterida/uso terapêutico , Hipogonadismo/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Próstata/efeitos dos fármacos , Testosterona/análogos & derivados , Idoso , Composição Corporal/efeitos dos fármacos , Quimioterapia Combinada , Finasterida/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular/efeitos dos fármacos , Testosterona/farmacologia , Testosterona/uso terapêutico , Resultado do Tratamento
11.
BMC Med ; 12: 211, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25428524

RESUMO

BACKGROUND: Potential cardiovascular (CV) risks of testosterone replacement therapy (TRT) are currently a topic of intense interest. However, no studies have addressed CV risk as a function of the route of administration of TRT. METHODS: Two meta-analyses were conducted, one of CV adverse events (AEs) in 35 randomized controlled trials (RCTs) of TRT lasting 12 weeks or more, and one of 32 studies reporting the effect of TRT on serum testosterone and dihydrotestosterone (DHT). RESULTS: CV risks of TRT: Of 2,313 studies identified, 35 were eligible and included 3,703 mostly older men who experienced 218 CV-related AEs. No significant risk for CV AEs was present when all TRT administration routes were grouped (relative risk (RR) = 1.28, 95% confidence interval (CI): 0.76 to 2.13, P = 0.34). When analyzed separately, oral TRT produced significant CV risk (RR = 2.20, 95% CI: 1.45 to 3.55, P = 0.015), while neither intramuscular (RR = 0.66, 95% CI: 0.28 to 1.56, P = 0.32) nor transdermal (gel or patch) TRT (RR = 1.27, 95% CI: 0.62 to 2.62, P = 0.48) significantly altered CV risk. Serum testosterone/DHT following TRT: Of 419 studies identified, 32 were eligible which included 1,152 men receiving TRT. No significant difference in the elevation of serum testosterone was present between intramuscular or transdermal TRT. However, transdermal TRT elevated serum DHT (5.46-fold, 95% CI: 4.51 to 6.60) to a greater magnitude than intramuscular TRT (2.20-fold, 95% CI: 1.74 to 2.77). CONCLUSIONS: Oral TRT produces significant CV risk. While no significant effects on CV risk were observed with either injected or transdermal TRT, the point estimates suggest that further research is needed to establish whether administration by these routes is protective or detrimental, respectively. Differences in the degree to which serum DHT is elevated may underlie the varying CV risk by TRT administration route, as elevated serum dihydrotestosterone has been shown to be associated with CV risk in observational studies.


Assuntos
Doenças Cardiovasculares/etiologia , Di-Hidrotestosterona/sangue , Testosterona/administração & dosagem , Administração Cutânea , Adulto , Doenças Cardiovasculares/sangue , Terapia de Reposição Hormonal , Humanos , Injeções Intramusculares , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco
12.
Artigo em Inglês | MEDLINE | ID: mdl-38764311

RESUMO

BACKGROUND: The rate and magnitude of skeletal muscle wasting after severe spinal cord injury (SCI) exceeds most other disuse conditions. Assessing the time course of molecular changes can provide insight into the progression of muscle wasting post-SCI. The goals of this study were (1) to identify potential targets that may prevent the pathologic features of SCI in soleus muscles and (2) to establish therapeutic windows for treating these pathologic changes. METHODS: Four-month-old Sprague-Dawley male rats received T9 laminectomy (SHAM surgery) or severe contusion SCI. Hindlimb locomotor function was assessed weekly, with soleus muscles obtained 1 week, 2 weeks, 1 month and 3 months post-surgery (n = 6-7 per group per timepoint). RNA was extracted from muscles for bulk RNA-sequencing analysis (n = 3-5 per group per timepoint). Differentially expressed genes (DEGs) were evaluated between age-matched SHAM and SCI animals. Myofiber size, muscle fibre type and fibrosis were assessed on contralateral muscles. RESULTS: SCI produced immediate and persistent hindlimb paralysis, with Basso-Beattie-Bresnahan locomotor scores remaining below 7 throughout the study, contributing to a progressive 25-50% lower soleus mass and myofiber atrophy versus SHAM (P < 0.05 at all timepoints). Transcriptional comparisons of SCI versus SHAM resulted in 184 DEGs (1 week), 436 DEGs (2 weeks), 133 DEGs (1 month) and 1200 DEGs (3 months). Upregulated atrophy-related genes included those associated with cell senescence, nuclear factor kappa B, ubiquitin proteasome and unfolded protein response pathways, along with upregulated genes that negatively influence muscle growth through the transforming growth factor beta pathway and inhibition of insulin-like growth factor-I/Akt/mechanistic target of rapamycin and p38/mitogen-activated protein kinase signalling. Genes associated with extracellular matrix (ECM), including collagens, collagen crosslinkers, proteoglycans and those regulating ECM integrity, were enriched within upregulated DEGs at 1 week but subsequently downregulated at 2 weeks and 3 months and were accompanied by >50% higher ECM areas and hydroxyproline levels in SCI muscles (P < 0.05). Myofiber remodelling genes were enriched in upregulated DEGs at 2 weeks and 1 month and were downregulated at 3 months. Genes that regulate neuromuscular junction remodelling were evident in muscles post-SCI, along with slow-to-fast fibre-type shifts: 1 week and 2 weeks SCI muscles were composed of 90% myosin heavy chain (MHC) type I fibres, which decreased to only 16% at 3 months and were accompanied by 50% fibres containing MHC IIX (P < 0.05). Metabolism genes were enriched in upregulated DEGs at 1 month and were further enriched at 3 months. CONCLUSIONS: Our results substantiate many known pathologic features of SCI-induced wasting in rat skeletal muscle and identify a progressive and dynamic transcriptional landscape within the post-SCI soleus. Future studies are warranted to consider these therapeutic treatment windows when countering SCI muscle pathology.

13.
Med Sci Sports Exerc ; 55(5): 813-823, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728986

RESUMO

INTRODUCTION: Spinal cord injury (SCI) produces diminished bone perfusion and bone loss in the paralyzed limbs. Activity-based physical therapy (ABPT) modalities that mobilize and/or reload the paralyzed limbs (e.g., bodyweight-supported treadmill training (BWSTT) and passive-isokinetic bicycle training) transiently promote lower-extremity blood flow (BF). However, it remains unknown whether ABPT alter resting-state bone BF or improve skeletal integrity after SCI. METHODS: Four-month-old male Sprague-Dawley rats received T 9 laminectomy alone (SHAM; n = 13) or T 9 laminectomy with severe contusion SCI ( n = 48). On postsurgery day 7, SCI rats were stratified to undergo 3 wk of no ABPT, quadrupedal (q)BWSTT, or passive-isokinetic hindlimb bicycle training. Both ABPT regimens involved two 20-min bouts per day, performed 5 d·wk -1 . We assessed locomotor recovery, bone turnover with serum assays and histomorphometry, distal femur bone microstructure using in vivo microcomputed tomography, and femur and tibia resting-state bone BF after in vivo microsphere infusion. RESULTS: All SCI animals displayed immediate hindlimb paralysis. SCI without ABPT exhibited uncoupled bone turnover and progressive cancellous and cortical bone loss. qBWSTT did not prevent these deficits. In comparison, hindlimb bicycle training suppressed surface-level bone resorption indices without suppressing bone formation indices and produced robust cancellous and cortical bone recovery at the distal femur. No bone BF deficits existed 4 wk after SCI, and neither qBWSTT nor bicycle altered resting-state bone perfusion or locomotor recovery. However, proximal tibia BF correlated with several histomorphometry-derived bone formation and resorption indices at this skeletal site across SCI groups. CONCLUSIONS: These data indicate that passive-isokinetic bicycle training reversed cancellous and cortical bone loss after severe SCI through antiresorptive and/or bone anabolic actions, independent of locomotor recovery or changes in resting-state bone perfusion.


Assuntos
Osso e Ossos , Traumatismos da Medula Espinal , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Microtomografia por Raio-X , Traumatismos da Medula Espinal/terapia , Perfusão
14.
Cancer Med ; 11(1): 50-60, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34791809

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest of all common malignancies. Treatment is difficult and often complicated by the presence of cachexia. The clinical portrait of cachexia contributes to the poor prognosis experienced by PDAC patients and worsens therapeutic outcomes. We propose that low bone mineral density is a component of cachexia, which we explore herein through a retrospective review of all patients at our facility that underwent surgery for PDAC between 2011 and 2018 and compared to sex-, age- and comorbidity-matched control individuals. Data were abstracted from the medical record and pre-operative computed tomography scans. Muscle mass and quality were measured at the L3 level and bone mineral density was measured as the radiation attenuation of the lumbar vertebral bodies. Patients with PDAC displayed typical signs of cachexia such as weight loss and radiologically appreciable deterioration of skeletal muscle. Critically, PDAC patients had significantly lower bone mineral density than controls, with 61.2% of PDAC patients categorized as osteopenic compared to 36.8% of controls. PDAC patients classified as osteopenic had significantly reduced survival (1.01 years) compared to patients without osteopenia (2.77 years). The presence of osteopenia was the strongest clinical predictor of 1- and 2-year disease-specific mortality, increasing the risk of death by 107% and 80%, respectively. Osteopenia serves as a test of 2-year mortality with sensitivity of 76% and specificity of 58%. These data therefore identify impaired bone mineral density as a key component of cachexia and predictor of postoperative survival in patients with PDAC. The mechanisms that lead to bone wasting in tumor-bearing hosts deserve further study.


Assuntos
Doenças Ósseas Metabólicas/complicações , Caquexia/etiologia , Carcinoma Ductal Pancreático/complicações , Carcinoma Ductal Pancreático/cirurgia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/cirurgia , Idoso , Densidade Óssea , Doenças Ósseas Metabólicas/diagnóstico por imagem , Caquexia/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Análise de Sobrevida , Tomografia Computadorizada por Raios X
15.
Am J Physiol Endocrinol Metab ; 300(4): E650-60, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21266670

RESUMO

Selective androgen receptor modulators (SARMs) now under development can protect against muscle and bone loss without causing prostate growth or polycythemia. 17ß-Hydroxyestra-4,9,11-trien-3-one (trenbolone), a potent testosterone analog, may have SARM-like actions because, unlike testosterone, trenbolone does not undergo tissue-specific 5α-reduction to form more potent androgens. We tested the hypothesis that trenbolone-enanthate (TREN) might prevent orchiectomy-induced losses in muscle and bone and visceral fat accumulation without increasing prostate mass or resulting in adverse hemoglobin elevations. Male F344 rats aged 3 mo underwent orchiectomy or remained intact and were administered graded doses of TREN, supraphysiological testosterone-enanthate, or vehicle for 29 days. In both intact and orchiectomized animals, all TREN doses and supraphysiological testosterone-enanthate augmented androgen-sensitive levator ani/bulbocavernosus muscle mass by 35-40% above shams (P ≤ 0.001) and produced a dose-dependent partial protection against orchiectomy-induced total and trabecular bone mineral density losses (P < 0.05) and visceral fat accumulation (P < 0.05). The lowest doses of TREN successfully maintained prostate mass and hemoglobin concentrations at sham levels in both intact and orchiectomized animals, whereas supraphysiological testosterone-enanthate and high-dose TREN elevated prostate mass by 84 and 68%, respectively (P < 0.01). In summary, low-dose administration of the non-5α-reducible androgen TREN maintains prostate mass and hemoglobin concentrations near the level of shams while producing potent myotrophic actions in skeletal muscle and partial protection against orchiectomy-induced bone loss and visceral fat accumulation. Our findings indicate that TREN has advantages over supraphysiological testosterone and supports the need for future preclinical studies examining the viability of TREN as an option for androgen replacement therapy.


Assuntos
Adiposidade/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Hemoglobinas/efeitos dos fármacos , Músculos/efeitos dos fármacos , Próstata/efeitos dos fármacos , Acetato de Trembolona/farmacologia , Adiposidade/fisiologia , Anabolizantes/farmacologia , Animais , Osso e Ossos/anatomia & histologia , Osso e Ossos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Hemoglobinas/metabolismo , Terapia de Reposição Hormonal , Masculino , Músculos/anatomia & histologia , Músculos/metabolismo , Orquiectomia , Tamanho do Órgão/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Projetos Piloto , Próstata/anatomia & histologia , Próstata/metabolismo , Ratos , Ratos Endogâmicos F344 , Testosterona/farmacologia
16.
Curr Opin Pharmacol ; 60: 193-199, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461564

RESUMO

Skeletal muscle atrophy is a hallmark of severe spinal cord injury (SCI) that is precipitated by the neural insult and paralysis. Additionally, other factors may influence muscle loss, including systemic inflammation, low testosterone, low insulin-like growth factor (IGF)-1, and high-dose glucocorticoid treatment. The signaling cascades that drive SCI-induced muscle loss are common among most forms of disuse atrophy and include ubiquitin-proteasome signaling and others. However, differing magnitudes and patterns of atrophic signals exist after SCI versus other disuse conditions and are accompanied by endogenous inhibition of IGF-1/PI3K/Akt signaling, which combine to produce exceedingly rapid atrophy. Several well-established anabolic agents, including androgens and myostatin inhibitors, display diminished ability to prevent SCI-induced atrophy, while ursolic acid and ß2-agonists more effectively attenuate muscle loss. Strategies combining physical rehabilitation regimens to reload the paralyzed limbs with drugs targeting the underlying molecular pathways hold the greatest potential to improve muscle recovery after severe SCI.


Assuntos
Atrofia Muscular/prevenção & controle , Preparações Farmacêuticas , Traumatismos da Medula Espinal , Humanos , Músculo Esquelético/patologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
17.
Int J Cardiol ; 338: 196-203, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34126132

RESUMO

BACKGROUND: Ischemic heart disease and the resulting heart failure continue to carry high morbidity and mortality, and a breakthrough in our understanding of this disorder is needed. The adult spiny mouse (Acomys cahirinus) has evolved the remarkable capacity to regenerate full-thickness skin tissue, including microvasculature and cartilage, without fibrosis or scarring. We hypothesized that lack of scarring and resulting functional regeneration also applies to the adult Acomys heart. METHODS AND RESULTS: We compared responses of the Acomys heart to CD1 outbred Mus heart following acute left anterior descending coronary artery ligation to induce myocardial infarction. Both Acomys and Mus hearts showed decreased ejection fraction (EF) after ligation. However, Acomys hearts showed significant EF recovery to pre-ligation values over four weeks. Histological analysis showed comparable infarct area 24-h after ligation with a similar collateral flow in both species' hearts, but subsequently, Acomys displayed reduced infarct size, regenerated microvasculature, and increased cell proliferative activity in the infarcted area. CONCLUSIONS: These observations suggest that adult Acomys displays remarkable cardiac recovery properties after acute coronary artery occlusion and may be a useful model to understand functional recovery better. TRANSLATIONAL PERSPECTIVE: Adult Acomys provides a novel mammalian model to further investigate the cardioprotective and regenerative signaling mechanisms in adult mammals. This opens the door to breakthrough treatment strategies for the injured myocardium and help millions of patients with heart failure secondary to tissue injury with irreversible damage.


Assuntos
Regeneração , Pele , Adulto , Animais , Cicatriz , Fibrose , Humanos , Murinae , Pele/patologia
18.
J Appl Physiol (1985) ; 131(4): 1288-1299, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473574

RESUMO

Diminished bone perfusion develops in response to disuse and has been proposed as a mechanism underlying bone loss. Bone blood flow (BF) has not been investigated within the unique context of severe contusion spinal cord injury (SCI), a condition that produces neurogenic bone loss that is precipitated by disuse and other physiological consequences of central nervous system injury. Herein, 4-mo-old male Sprague-Dawley rats received T9 laminectomy (SHAM) or laminectomy with severe contusion SCI (n = 20/group). Time course assessments of hindlimb bone microstructure and bone perfusion were performed in vivo at 1- and 2-wk postsurgery via microcomputed tomography (microCT) and intracardiac microsphere infusion, respectively, and bone turnover indices were determined via histomorphometry. Both groups exhibited cancellous bone loss beginning in the initial postsurgical week, with cancellous and cortical bone deficits progressing only in SCI thereafter. Trabecular bone deterioration coincided with uncoupled bone turnover after SCI, as indicated by signs of ongoing osteoclast-mediated bone resorption and a near-complete absence of osteoblasts and cancellous bone formation. Bone BF was not different between groups at 1 wk, when both groups displayed bone loss. In comparison, femur and tibia perfusion was 30%-40% lower in SCI versus SHAM at 2 wk, with the most pronounced regional BF deficits occurring at the distal femur. Significant associations existed between distal femur BF and cancellous and cortical bone loss indices. Our data provide the first direct evidence indicating that bone BF deficits develop in response to SCI and temporally coincide with suppressed bone formation and with cancellous and cortical bone deterioration.NEW & NOTEWORTHY We provide the first direct evidence indicating femur and tibia blood flow (BF) deficits exist in conscious (awake) rats after severe contusion spinal cord injury (SCI), with the distal femur displaying the largest BF deficits. Reduced bone perfusion temporally coincided with unopposed bone resorption, as indicated by ongoing osteoclast-mediated bone resorption and a near absence of surface-level bone formation indices, which resulted in severe cancellous and cortical microstructural deterioration after SCI.


Assuntos
Osteogênese , Traumatismos da Medula Espinal , Animais , Osso e Ossos , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações , Microtomografia por Raio-X
19.
Am J Physiol Endocrinol Metab ; 299(5): E841-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20739509

RESUMO

Bone may contain an intraskeletal reservoir of sex steroids that is capable of producing biological effects. The purposes of these experiments were to 1) establish and validate methods to extract and measure intraskeletal sex hormones, 2) compare serum and intraskeletal sex hormone abundance, and 3) determine the impact of testosterone-enanthate administration and orchiectomy on intraskeletal sex hormone concentrations. Tibiae from male F344 rats were crushed, suspended in an aqueous buffer, disrupted mechanically and sonically, extracted with organic solvents, dried, and reconstituted in assay buffer appropriate for measurement of testosterone, dihydrotestosterone, and estradiol by immunoassay. Prior to extraction, bone homogenate was spiked with [³H]testosterone, [³H]dihydrotestosterone, or [³H]estradiol, and >80% of each ³H-labeled sex hormone was recovered. Extracted bone samples were also assayed with and without known amounts of unlabeled sex hormones, and >97% of the expected hormone concentrations were measured. Administration of testosterone-enanthate increased intraskeletal testosterone 11-fold and intraskeletal dihydrotestosterone by 82% without altering intraskeletal estradiol (P < 0.01). Conversely, orchiectomy did not alter intraskeletal testosterone or estradiol but increased intraskeletal dihydrotestosterone by 39% (P < 0.05). In intact rats, intraskeletal testosterone and dihydrotestosterone were directionally higher than in serum, whereas intraskeletal estradiol was directionally lower than serum. Serum androgens were positively correlated with intraskeletal androgens (r = 0.74-0.96, P < 0.001); however, neither serum nor intraskeletal androgens nor serum estradiol were correlated with intraskeletal estradiol. We report the validation of a novel method for measuring intraskeletal sex hormones. Our findings demonstrate that the intraskeletal sex steroid reservoirs are modifiable and only partially influenced by circulating sex hormones.


Assuntos
Osso e Ossos/química , Di-Hidrotestosterona/análise , Estradiol/análise , Testosterona/análise , Animais , Osso e Ossos/ultraestrutura , Masculino , Projetos Piloto , Ratos , Ratos Endogâmicos F344 , Organismos Livres de Patógenos Específicos , Tomografia Computadorizada por Raios X
20.
Physiol Rep ; 8(3): e14357, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32026570

RESUMO

To determine whether muscle disuse after a spinal cord injury (SCI) produces elevated markers of cellular senescence and induces markers of the senescence-associated secretory phenotypes (SASPs) in paralyzed skeletal muscle. Four-month-old male Sprague-Dawley rats received a moderate-severe (250 kiloDyne) T-9 contusion SCI or Sham surgery and were monitored over 2 weeks, and 1-, 2-, or 3 months. Animals were sacrificed via isoflurane overdose and terminal exsanguination and the soleus was carefully excised and snap frozen. Protein expression of senescence markers p53, p27, and p16 was determined from whole soleus lysates using Western immunoblotting and RT-qPCR was used to determine the soleus gene expression of IL-1α, IL-1ß, IL-6, CXCL1, and TNFα. SCI soleus muscle displayed 2- to 3-fold higher total p53 protein expression at 2 weeks, and at 1 and 2 months when compared with Sham. p27 expression was stable across all groups and timepoints. p16 protein expression was lower at 3 months in SCI versus Sham, but not earlier timepoints. Gene expression was relatively stable between groups at 2 weeks. There were Surgery x Time interaction effects for IL-6 and TNFα mRNA expression but not for IL-1α, IL-1ß, or CXCL1. There were no main effects for time or surgery for IL-1α, IL-1ß, or CXCL1, but targeted t tests showed reductions in IL-1α and CXCL1 in SCI animals compared to Sham at 3 months and IL-1ß was reduced in SCI animals compared to Sham animals at the 2-month timepoint. The elevation in p53 does not appear consistent with the induction of SASP because mRNA expression of cytokines associated with senescence was not uniformly upregulated and, in some instances, was downregulated in the early chronic phase of SCI.


Assuntos
Músculo Esquelético/metabolismo , Traumatismos da Medula Espinal/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Contusões/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa