Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(6): 5397-5403, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35025032

RESUMO

BACKGROUND: Grain size is an essential factor of grain quality and yield in rice. The genetic studies have substantially contributed to enhancing yield and maintaining a good quality of rice. The two major genes GS3 (a negative regulator of grain length) and GW2 (a negative regulator of grain width) with functional mutation play a significant role in controlling the grain size of rice. METHODS AND RESULTS: In the study, 17 different widely grown Pakistani landraces of various genetic and geographic backgrounds were evaluated for grain phenotypic traits (1000-grain weight, length, width, and thickness) and also screened for genotypic mutation in GS3 and GW2 genes. Phenotypic data revealed the range for grain weight from 16.86 g (Lateefy) to 26.91 g (PS2), grain length ranged from 7.27 mm (JP-5) to 12.18 mm (PS2), grain width ranged from 2.01 mm (Lateefy) to 3.51 mm (JP5), and grain thickness ranged from 1.79 mm to 2.19. Correlation revealed a negative and significant correlation between grain width and length. There was no significant correlation between grain length and 1000-grain weight and grain width. LSD test displayed that the means of three variables grain length, grain width, and 1000-grain weight were statistically different from one another except grain width and grain breadth. Fifteen accessions carried the domesticated allele of GS3 while JP5 and Fakhr-e-Malakand carried the dominant allele. Similarly, fifteen accessions carried the dominant allele of GW2 while JP-5 and Fakhr-e-Malakand carried the mutant allele. CONCLUSIONS: The study shows that the mutant alleles of both genes are of significance to pyramid them in any breeding program. However, just incorporating favorable alleles is not the sole solution for improving the grain size. Therefore, further elucidation of GS3 and GW2 genes regulatory network, their interaction, trade-off, and pathways will better coordinate their marker-assisted selection in the future breeding program. Additionally, the study concluded that the selection of grain size was not dependent on 1000-grain weight in the selected germplasm.


Assuntos
Oryza , Alelos , Grão Comestível/genética , Genes de Plantas/genética , Oryza/genética , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa