Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(13): E1232-41, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23476065

RESUMO

Metabolite composition offers a powerful tool for understanding gene function and regulatory processes. However, metabolomics studies on multicellular organisms have thus far been performed primarily on whole organisms, organs, or cell lines, losing information about individual cell types within a tissue. With the goal of profiling metabolite content in different cell populations within an organ, we used FACS to dissect GFP-marked cells from Arabidopsis roots for metabolomics analysis. Here, we present the metabolic profiles obtained from five GFP-tagged lines representing core cell types in the root. Fifty metabolites were putatively identified, with the most prominent groups being glucosinolates, phenylpropanoids, and dipeptides, the latter of which is not yet explored in roots. The mRNA expression of enzymes or regulators in the corresponding biosynthetic pathways was compared with the relative metabolite abundance. Positive correlations suggest that the rate-limiting steps in biosynthesis of glucosinolates in the root are oxidative modifications of side chains. The current study presents a work flow for metabolomics analyses of cell-type populations.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Metaboloma/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/biossíntese , RNA de Plantas/biossíntese
2.
PLoS Genet ; 5(12): e1000777, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20019811

RESUMO

The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB-type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific down-regulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle.


Assuntos
Redes Reguladoras de Genes , Genes de Plantas , Solanum lycopersicum/genética , Cromossomos de Plantas , Flavonoides , Frutas , Regulação da Expressão Gênica de Plantas , Mutação
3.
J Plant Physiol ; 167(8): 589-96, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20036442

RESUMO

Sugar accumulation, the key process determining fruit quality, is controlled by both the translocation of sugars and their metabolism in developing fruits. Sugar composition in watermelon, as in all cucurbit fruits, includes sucrose, fructose and glucose. The proportions of these three sugars are determined primarily by three enzyme families: invertases, sucrose synthases (SuSys) and sucrose phosphate synthases (SPSs). The goal of the present research was to explore the process of sugar metabolism in watermelon fruits. Crosses between the domestic watermelon (Citrullus lanatus) and three wild species provided a wide germplasm to explore genetic variability in sugar composition and metabolism. This survey demonstrated great genetic variability in sugar content and in the proportions of sucrose, glucose and fructose in mature fruits. Genotypes accumulating high and low percentage of sucrose provided an experimental system to study sugar metabolism in developing fruits. Insoluble invertase activity was high and constant throughout fruit development in control lines and in genotypes accumulating low levels of sucrose, while in genotypes accumulating high levels of sucrose, activity declined sharply 4 weeks after pollination. Soluble acid invertase activity was significantly lower in genotypes accumulating high levels of sucrose than in low-sucrose-accumulating genotypes. Conversely, activities of SuSy and SPS were higher in the high-sucrose-accumulating genotypes. The present results establish that, within the genus Citrullus, there are genotypes that accumulate a high percentage of sucrose in the fruit, while others accumulate high percentages of glucose and fructose. The significant negative correlation between insoluble invertase activity and fruit sucrose level suggests that sucrose accumulation is affected by both phloem unloading and sugar metabolism.


Assuntos
Citrullus/genética , Citrullus/metabolismo , Frutas/genética , Frutas/metabolismo , Variação Genética , Sacarose/metabolismo , Citrullus/enzimologia , Citrullus/crescimento & desenvolvimento , Cruzamentos Genéticos , Frutose/metabolismo , Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Genótipo , Glucose/metabolismo , Glucosiltransferases/metabolismo , Concentração de Íons de Hidrogênio , Solubilidade , beta-Frutofuranosidase/metabolismo
4.
Plant Physiol ; 147(2): 823-51, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18441227

RESUMO

The cuticle, covering the surface of all primary plant organs, plays important roles in plant development and protection against the biotic and abiotic environment. In contrast to vegetative organs, very little molecular information has been obtained regarding the surfaces of reproductive organs such as fleshy fruit. To broaden our knowledge related to fruit surface, comparative transcriptome and metabolome analyses were carried out on peel and flesh tissues during tomato (Solanum lycopersicum) fruit development. Out of 574 peel-associated transcripts, 17% were classified as putatively belonging to metabolic pathways generating cuticular components, such as wax, cutin, and phenylpropanoids. Orthologs of the Arabidopsis (Arabidopsis thaliana) SHINE2 and MIXTA-LIKE regulatory factors, activating cutin and wax biosynthesis and fruit epidermal cell differentiation, respectively, were also predominantly expressed in the peel. Ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and gas chromatography-mass spectrometry using a flame ionization detector identified 100 metabolites that are enriched in the peel tissue during development. These included flavonoids, glycoalkaloids, and amyrin-type pentacyclic triterpenoids as well as polar metabolites associated with cuticle and cell wall metabolism and protection against photooxidative stress. Combined results at both transcript and metabolite levels revealed that the formation of cuticular lipids precedes phenylpropanoid and flavonoid biosynthesis. Expression patterns of reporter genes driven by the upstream region of the wax-associated SlCER6 gene indicated progressive activity of this wax biosynthetic gene in both fruit exocarp and endocarp. Peel-associated genes identified in our study, together with comparative analysis of genes enriched in surface tissues of various other plant species, establish a springboard for future investigations of plant surface biology.


Assuntos
Perfilação da Expressão Gênica , Genes de Plantas , Solanum lycopersicum/metabolismo , Sequência de Bases , Cromatografia Líquida , Primers do DNA , Cromatografia Gasosa-Espectrometria de Massas , Solanum lycopersicum/genética , Espectrometria de Massas , Família Multigênica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa