Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cell ; 175(3): 652-664.e12, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30270038

RESUMO

Non-image-forming vision in mammals is mediated primarily by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, by far the best-studied subtype, melanopsin activates PLCß4 (phospholipase C-ß4) to open TRPC6,7 channels, mechanistically similar to phototransduction in fly rhabdomeric (microvillous) photoreceptors. We report here that, surprisingly, mouse M4-ipRGCs rely on a different and hitherto undescribed melanopsin-driven, ciliary phototransduction mechanism involving cyclic nucleotide as the second messenger and HCN channels rather than CNG channels as the ion channel for phototransduction. Even more surprisingly, within an individual mouse M2-ipRGC, this HCN-channel-dependent, ciliary phototransduction pathway operates in parallel with the TRPC6,7-dependent rhabdomeric pathway. These findings reveal a complex heterogeneity in phototransduction among ipRGCs and, more importantly, break a general dogma about segregation of the two phototransduction motifs, likely with strong evolutionary implications.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Células Ganglionares da Retina/metabolismo , Visão Ocular , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos Cíclicos/metabolismo , Células Ganglionares da Retina/fisiologia , Canais de Cátion TRPC/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(21): e2404763121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743626

RESUMO

Congenital stationary night blindness (CSNB) is an inherited retinal disease that causes a profound loss of rod sensitivity without severe retinal degeneration. One well-studied rhodopsin point mutant, G90D-Rho, is thought to cause CSNB because of its constitutive activity in darkness causing rod desensitization. However, the nature of this constitutive activity and its precise molecular source have not been resolved for almost 30 y. In this study, we made a knock-in (KI) mouse line with a very low expression of G90D-Rho (equal in amount to ~0.1% of normal rhodopsin, WT-Rho, in WT rods), with the remaining WT-Rho replaced by REY-Rho, a mutant with a very low efficiency of activating transducin due to a charge reversal of the highly conserved ERY motif to REY. We observed two kinds of constitutive noise: one being spontaneous isomerization (R*) of G90D-Rho at a molecular rate (R* s-1) 175-fold higher than WT-Rho and the other being G90D-Rho-generated dark continuous noise comprising low-amplitude unitary events occurring at a very high molecular rate equivalent in effect to ~40,000-fold of R* s-1 from WT-Rho. Neither noise type originated from G90D-Opsin because exogenous 11-cis-retinal had no effect. Extrapolating the above observations at low (0.1%) expression of G90D-Rho to normal disease exhibited by a KI mouse model with RhoG90D/WTand RhoG90D/G90D genotypes predicts the disease condition very well quantitatively. Overall, the continuous noise from G90D-Rho therefore predominates, constituting the major equivalent background light causing rod desensitization in CSNB.


Assuntos
Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Miopia , Cegueira Noturna , Rodopsina , Animais , Cegueira Noturna/genética , Cegueira Noturna/metabolismo , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/metabolismo , Camundongos , Rodopsina/genética , Rodopsina/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/genética , Miopia/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Escuridão , Transducina/genética , Transducina/metabolismo , Técnicas de Introdução de Genes , Modelos Animais de Doenças
3.
Proc Natl Acad Sci U S A ; 120(1): e2216599120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584299

RESUMO

Nonimage-forming vision in mammals is mediated primarily by melanopsin (OPN4)-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, melanopsin predominantly activates, via Gαq,11,14, phospholipase C-ß4 to open transient receptor 6 (TRPC6) and TRPC7 channels. In M2- and M4-ipRGCs, however, a prominent phototransduction mechanism involves the opening of hyperpolarization- and cyclic nucleotide-gated channels via cyclic nucleotide, although the upstream steps remain uncertain. We report here experiments, primarily on M4-ipRGCs, with photo-uncaging of cyclic nucleotides and virally expressed CNGA2 channels to conclude that the second messenger is cyclic adenosine monophosphate (cAMP) - very surprising considering that cyclic guanosine monophosphate (cGMP) is used in almost all cyclic nucleotide-mediated phototransduction mechanisms across the animal kingdom. We further found that the upstream G protein is likewise Gq, which via its Gßγ subunits directly activates adenylyl cyclase (AC). Our findings are a demonstration in a native cell of a cross-motif GPCR signaling pathway from Gq directly to AC with a specific function.


Assuntos
Adenilil Ciclases , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Transdução de Sinal Luminoso , Células Ganglionares da Retina , Animais , Camundongos , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Transdução de Sinal Luminoso/fisiologia , Mamíferos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/metabolismo , Transdução de Sinais/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(52): e2315282120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109525

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) serve as primary photoceptors by expressing the photopigment, melanopsin, and also as retinal relay neurons for rod and cone signals en route to the brain, in both cases for the purpose of non-image vision as well as aspects of image vision. So far, six subtypes of ipRGCs (M1 through M6) have been characterized. Regarding their phototransduction mechanisms, we have previously found that, unconventionally, rhabdomeric (microvillous) and ciliary signaling motifs co-exist within a given M1-, M2-, and M4-ipRGC, with the first mechanism involving PLCß4 and TRPC6,7 channels and the second involving cAMP and HCN channels. We have now examined M3-, M5-, and M6-cells and found that each cell likewise uses both signaling pathways for phototransduction, despite differences in the percentage representation by each pathway in a given ipRGC subtype for bright-flash responses (and saturated except for M6-cells). Generally, M3- and M5-cells show responses quite similar in kinetics to M2-responses, and M6-cell responses resemble broadly those of M1-cells although much lower in absolute sensitivity and amplitude. Therefore, similar to rod and cone subtypes in image vision, ipRGC subtypes possess the same phototransduction mechanism(s) even though they do not show microvilli or cilia morphologically.


Assuntos
Neurônios Retinianos , Visão Ocular , Transdução de Sinal Luminoso/fisiologia , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Neurônios Retinianos/metabolismo , Opsinas de Bastonetes/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(32): e2121225119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914143

RESUMO

G protein-coupled receptor (GPCR) signaling is ubiquitous. As an archetype of this signaling motif, rod phototransduction has provided many fundamental, quantitative details, including a dogma that one active GPCR molecule activates a substantial number of downstream G protein/enzyme effector complexes. However, rod phototransduction is light-activated, whereas GPCR pathways are predominantly ligand-activated. Here, we report a detailed study of the ligand-triggered GPCR pathway in mammalian olfactory transduction, finding that an odorant-receptor molecule when (one-time) complexed with its most effective odorants produces on average much less than one downstream effector. Further experiments gave a nominal success probability of tentatively ∼10-4 (more conservatively, ∼10-2 to ∼10-5). This picture is potentially more generally representative of GPCR signaling than is rod phototransduction, constituting a paradigm shift.


Assuntos
Ligantes , Odorantes , Receptores Acoplados a Proteínas G , Receptores Odorantes , Transdução de Sinais , Olfato , Animais , Transdução de Sinal Luminoso , Mamíferos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes
6.
Cell ; 139(2): 246-64, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19837030

RESUMO

Seeing begins in the photoreceptors, where light is absorbed and signaled to the nervous system. Throughout the animal kingdom, photoreceptors are diverse in design and purpose. Nonetheless, phototransduction-the mechanism by which absorbed photons are converted into an electrical response-is highly conserved and based almost exclusively on a single class of photoproteins, the opsins. In this Review, we survey the G protein-coupled signaling cascades downstream from opsins in photoreceptors across vertebrate and invertebrate species, noting their similarities as well as differences.


Assuntos
Transdução de Sinal Luminoso , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Vertebrados
7.
PLoS Biol ; 18(2): e3000630, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32040503

RESUMO

Opsin3 (Opn3) is a transmembrane heptahelical G protein-coupled receptor (GPCR) with the potential to produce a nonvisual photoreceptive effect. Interestingly, anatomical profiling of GPCRs reveals that Opn3 mRNA is highly expressed in adipose tissue. The photosensitive functions of Opn3 in mammals are poorly understood, and whether Opn3 has a role in fat is entirely unknown. In this study, we found that Opn3-knockout (Opn3-KO) mice were prone to diet-induced obesity and insulin resistance. At the cellular level, Opn3-KO brown adipocytes cultured in darkness had decreased glucose uptake and lower nutrient-induced mitochondrial respiration than wild-type (WT) cells. Light exposure promoted mitochondrial activity and glucose uptake in WT adipocytes but not in Opn3-KO cells. Brown adipocytes carrying a defective mutation in Opn3's putative G protein-binding domain also exhibited a reduction in glucose uptake and mitochondrial respiration in darkness. Using RNA-sequencing, we identified several novel light-sensitive and Opn3-dependent molecular signatures in brown adipocytes. Importantly, direct exposure of brown adipose tissue (BAT) to light in living mice significantly enhanced thermogenic capacity of BAT, and this effect was diminished in Opn3-KO animals. These results uncover a previously unrecognized cell-autonomous, light-sensing mechanism in brown adipocytes via Opn3-GPCR signaling that can regulate fuel metabolism and mitochondrial respiration. Our work also provides a molecular basis for developing light-based treatments for obesity and its related metabolic disorders.


Assuntos
Adipócitos Marrons/metabolismo , Metabolismo Energético , Opsinas de Bastonetes/metabolismo , Tecido Adiposo Marrom/inervação , Animais , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Glucose/metabolismo , Resistência à Insulina , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mutação , Obesidade/genética , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Opsinas de Bastonetes/genética , Transdução de Sinais , Termogênese
8.
Proc Natl Acad Sci U S A ; 117(37): 23033-23043, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32873651

RESUMO

Numerous rhodopsin mutations have been implicated in night blindness and retinal degeneration, often with unclear etiology. D190N-rhodopsin (D190N-Rho) is a well-known inherited human mutation causing retinitis pigmentosa. Both higher-than-normal spontaneous-isomerization activity and misfolding/mistargeting of the mutant protein have been proposed as causes of the disease, but neither explanation has been thoroughly examined. We replaced wild-type rhodopsin (WT-Rho) in RhoD190N/WT mouse rods with a largely "functionally silenced" rhodopsin mutant to isolate electrical responses triggered by D190N-Rho activity, and found that D190N-Rho at the single-molecule level indeed isomerizes more frequently than WT-Rho by over an order of magnitude. Importantly, however, this higher molecular dark activity does not translate into an overall higher cellular dark noise, owing to diminished D190N-Rho content in the rod outer segment. Separately, we found that much of the degeneration and shortened outer-segment length of RhoD190N/WT mouse rods was not averted by ablating rod transducin in phototransduction-also consistent with D190N-Rho's higher isomerization activity not being the primary cause of disease. Instead, the low pigment content, shortened outer-segment length, and a moderate unfolded protein response implicate protein misfolding as the major pathogenic problem. Finally, D190N-Rho also provided some insight into the mechanism of spontaneous pigment excitation.


Assuntos
Degeneração Retiniana/metabolismo , Rodopsina/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Humanos , Transdução de Sinal Luminoso/fisiologia , Camundongos , Mutação/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/metabolismo , Segmento Externo da Célula Bastonete/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(11): 5144-5153, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30796193

RESUMO

G protein-coupled receptor (GPCR) signaling is crucial for many physiological processes. A signature of such pathways is high amplification, a concept originating from retinal rod phototransduction, whereby one photoactivated rhodopsin molecule (Rho*) was long reported to activate several hundred transducins (GT*s), each then activating a cGMP-phosphodiesterase catalytic subunit (GT*·PDE*). This high gain at the Rho*-to-GT* step has been challenged more recently, but estimates remain dispersed and rely on some nonintact rod measurements. With two independent approaches, one with an extremely inefficient mutant rhodopsin and the other with WT bleached rhodopsin, which has exceedingly weak constitutive activity in darkness, we obtained an estimate for the electrical effect from a single GT*·PDE* molecular complex in intact mouse rods. Comparing the single-GT*·PDE* effect to the WT single-photon response, both in Gcaps-/- background, gives an effective gain of only ∼12-14 GT*·PDE*s produced per Rho*. Our findings have finally dispelled the entrenched concept of very high gain at the receptor-to-G protein/effector step in GPCR systems.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/metabolismo , Motivos de Aminoácidos , Animais , GMP Cíclico/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinal Luminoso , Camundongos Transgênicos , Mutação/genética , Diester Fosfórico Hidrolases/metabolismo , Fótons , Rodopsina/química , Rodopsina/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(21): 5570-5575, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735665

RESUMO

In mammalian olfactory transduction, odorants activate a cAMP-mediated signaling pathway that leads to the opening of cyclic nucleotide-gated (CNG), nonselective cation channels and depolarization. The Ca2+ influx through open CNG channels triggers an inward current through Ca2+-activated Cl channels (ANO2), which is expected to produce signal amplification. However, a study on an Ano2-/- mouse line reported no elevation in the behavioral threshold of odorant detection compared with wild type (WT). Subsequent studies by others on the same Ano2-/- line, nonetheless, found subtle defects in olfactory behavior and some abnormal axonal projections from the olfactory receptor neurons (ORNs) to the olfactory bulb. As such, the question regarding signal amplification by the Cl current in WT mouse remains unsettled. Recently, with suction-pipette recording, we have successfully separated in frog ORNs the CNG and Cl currents during olfactory transduction and found the Cl current to predominate in the response down to the threshold of action-potential signaling to the brain. For better comparison with the mouse data by others, we have now carried out similar current-separation experiments on mouse ORNs. We found that the Cl current clearly also predominated in the mouse olfactory response at signaling threshold, accounting for ∼80% of the response. In the absence of the Cl current, we expect the threshold stimulus to increase by approximately sevenfold.


Assuntos
Anoctaminas/fisiologia , Encéfalo/fisiologia , Cálcio/farmacologia , Cloretos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Encéfalo/citologia , AMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Técnicas de Patch-Clamp , Transdução de Sinais/efeitos dos fármacos , Olfato/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 113(40): 11078-11087, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647918

RESUMO

Olfactory transduction in vertebrate olfactory receptor neurons (ORNs) involves primarily a cAMP-signaling cascade that leads to the opening of cyclic-nucleotide-gated (CNG), nonselective cation channels. The consequent Ca2+ influx triggers adaptation but also signal amplification, the latter by opening a Ca2+-activated Cl channel (ANO2) to elicit, unusually, an inward Cl current. Hence the olfactory response has inward CNG and Cl components that are in rapid succession and not easily separable. We report here success in quantitatively separating these two currents with respect to amplitude and time course over a broad range of odorant strengths. Importantly, we found that the Cl current is the predominant component throughout the olfactory dose-response relation, down to the threshold of signaling to the brain. This observation is very surprising given a recent report by others that the olfactory-signal amplification effected by the Ca2+-activated Cl current does not influence the behavioral olfactory threshold in mice.


Assuntos
Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Olfato/fisiologia , Animais , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Cloretos/metabolismo , AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Camundongos , Odorantes/análise , Neurônios Receptores Olfatórios/fisiologia , Transdução de Sinais , Olfato/genética
12.
Proc Natl Acad Sci U S A ; 113(32): 9093-8, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462111

RESUMO

It is a deeply engrained notion that the visual pigment rhodopsin signals light as a monomer, even though many G protein-coupled receptors are now known to exist and function as dimers. Nonetheless, recent studies (albeit all in vitro) have suggested that rhodopsin and its chromophore-free apoprotein, R-opsin, may indeed exist as a homodimer in rod disk membranes. Given the overwhelmingly strong historical context, the crucial remaining question, therefore, is whether pigment dimerization truly exists naturally and what function this dimerization may serve. We addressed this question in vivo with a unique mouse line (S-opsin(+)Lrat(-/-)) expressing, transgenically, short-wavelength-sensitive cone opsin (S-opsin) in rods and also lacking chromophore to exploit the fact that cone opsins, but not R-opsin, require chromophore for proper folding and trafficking to the photoreceptor's outer segment. In R-opsin's absence, S-opsin in these transgenic rods without chromophore was mislocalized; in R-opsin's presence, however, S-opsin trafficked normally to the rod outer segment and produced functional S-pigment upon subsequent chromophore restoration. Introducing a competing R-opsin transmembrane helix H1 or helix H8 peptide, but not helix H4 or helix H5 peptide, into these transgenic rods caused mislocalization of R-opsin and S-opsin to the perinuclear endoplasmic reticulum. Importantly, a similar peptide-competition effect was observed even in WT rods. Our work provides convincing evidence for visual pigment dimerization in vivo under physiological conditions and for its role in pigment maturation and targeting. Our work raises new questions regarding a potential mechanistic role of dimerization in rhodopsin signaling.


Assuntos
Multimerização Proteica , Pigmentos da Retina/química , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Opsinas/química , Espécies Reativas de Oxigênio/metabolismo , Pigmentos da Retina/fisiologia
13.
Proc Natl Acad Sci U S A ; 112(42): 13093-8, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26392540

RESUMO

The molecular circadian clocks in the mammalian retina are locally synchronized by environmental light cycles independent of the suprachiasmatic nuclei (SCN) in the brain. Unexpectedly, this entrainment does not require rods, cones, or melanopsin (OPN4), possibly suggesting the involvement of another retinal photopigment. Here, we show that the ex vivo mouse retinal rhythm is most sensitive to short-wavelength light but that this photoentrainment requires neither the short-wavelength-sensitive cone pigment [S-pigment or cone opsin (OPN1SW)] nor encephalopsin (OPN3). However, retinas lacking neuropsin (OPN5) fail to photoentrain, even though other visual functions appear largely normal. Initial evidence suggests that OPN5 is expressed in select retinal ganglion cells. Remarkably, the mouse corneal circadian rhythm is also photoentrainable ex vivo, and this photoentrainment likewise requires OPN5. Our findings reveal a light-sensing function for mammalian OPN5, until now an orphan opsin.


Assuntos
Córnea/fisiologia , Proteínas de Membrana/fisiologia , Opsinas/fisiologia , Retina/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Opsinas/genética , Raios Ultravioleta
14.
Physiol Rev ; 90(4): 1547-81, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20959623

RESUMO

Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors.


Assuntos
Células Ganglionares da Retina/fisiologia , Animais , Encéfalo/fisiologia , Humanos , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/citologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Sono
15.
Proc Natl Acad Sci U S A ; 111(7): 2752-7, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550304

RESUMO

Retinal cones are photoreceptors for daylight vision. For lower vertebrates, cones are known to give monophasic, hyperpolarizing responses to light flashes. For primate cones, however, they have been reported to give strongly biphasic flash responses, with an initial hyperpolarization followed by a depolarization beyond the dark level, now a textbook dogma. We have reexamined this primate-cone observation and, surprisingly, found predominantly monophasic cone responses. Correspondingly, we found that primate cones began to adapt to steady light at much lower intensities than previously reported, explainable by a larger steady response to background light for a monophasic than for a biphasic response. Similarly, we have found a monophasic cone response for several other mammalian species. Thus, a monophasic flash response may in fact be the norm for primate and other mammalian cones as for lower-vertebrate cones. This revised information is important for ultimately understanding human retinal signal processing and correlating with psychophysical data.


Assuntos
Luz , Macaca fascicularis/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Visão Ocular/fisiologia , Animais , Humanos , Camundongos , Estimulação Luminosa , Ratos , Suínos
16.
Proc Natl Acad Sci U S A ; 110(18): 7470-5, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589882

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are recently discovered photoreceptors in the mammalian eye. These photoreceptors mediate primarily nonimage visual functions, such as pupillary light reflex and circadian photoentrainment, which are generally expected to respond to the absolute light intensity. The classical rod and cone photoreceptors, on the other hand, mediate image vision by signaling contrast, accomplished by adaptation to light. Experiments by others have indicated that the ipRGCs do, in fact, light-adapt. We found the same but, in addition, have now quantified this light adaptation for the M1 ipRGC subtype. Interestingly, in incremental-flash-on-background experiments, the ipRGC's receptor current showed a flash sensitivity that adapted in background light according to the Weber-Fechner relation, well known to describe the adaptation behavior of rods and cones. Part of this light adaptation by ipRGCs appeared to be triggered by a Ca(2+) influx, in that the flash response elicited in the absence of extracellular Ca(2+) showed a normal rising phase but a slower decay phase, resulting in longer time to peak and higher sensitivity. There is, additionally, a prominent Ca(2+)-independent component of light adaptation not typically seen in rods and cones or in invertebrate rhabdomeric photoreceptors.


Assuntos
Adaptação Ocular/efeitos da radiação , Luz , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Potenciais de Ação/efeitos da radiação , Animais , Comportamento Animal/efeitos da radiação , Cálcio/metabolismo , Sinalização do Cálcio/efeitos da radiação , Retroalimentação Fisiológica/efeitos da radiação , Transdução de Sinal Luminoso/efeitos da radiação , Camundongos , Camundongos Transgênicos , Opsinas de Bastonetes/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(10): 4045-50, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431148

RESUMO

Glaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs. In cultured RGCs, DLK signaling is both necessary and sufficient for cell death. DLK undergoes robust posttranscriptional up-regulation in response to axonal injury in vitro and in vivo. Using a conditional knockout approach, we confirmed that DLK is required for RGC JNK activation and cell death in a rodent model of optic neuropathy. In addition, tozasertib, a small molecule protein kinase inhibitor with activity against DLK, protects RGCs from cell death in rodent glaucoma and traumatic optic neuropathy models. Together, our results establish a previously undescribed drug/drug target combination in glaucoma, identify an early marker of RGC injury, and provide a starting point for the development of more specific neuroprotective DLK inhibitors for the treatment of glaucoma, nonglaucomatous forms of optic neuropathy, and perhaps other CNS neurodegenerations.


Assuntos
MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/fisiologia , Células Ganglionares da Retina/enzimologia , Células Ganglionares da Retina/patologia , Animais , Morte Celular/genética , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Glaucoma/tratamento farmacológico , Glaucoma/etiologia , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Masculino , Camundongos , Doenças do Nervo Óptico/etiologia , Doenças do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/enzimologia , Traumatismos do Nervo Óptico/patologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Ratos , Ratos Wistar , Células Ganglionares da Retina/efeitos dos fármacos , Transdução de Sinais , Regulação para Cima
18.
Hum Mol Genet ; 22(1): 168-83, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23035049

RESUMO

The GUCY2D gene encodes retinal membrane guanylyl cyclase (RetGC1), a key component of the phototransduction machinery in photoreceptors. Mutations in GUCY2D cause Leber congenital amaurosis type 1 (LCA1), an autosomal recessive human retinal blinding disease. The effects of RetGC1 deficiency on human rod and cone photoreceptor structure and function are currently unknown. To move LCA1 closer to clinical trials, we characterized a cohort of patients (ages 6 months-37 years) with GUCY2D mutations. In vivo analyses of retinal architecture indicated intact rod photoreceptors in all patients but abnormalities in foveal cones. By functional phenotype, there were patients with and those without detectable cone vision. Rod vision could be retained and did not correlate with the extent of cone vision or age. In patients without cone vision, rod vision functioned unsaturated under bright ambient illumination. In vitro analyses of the mutant alleles showed that in addition to the major truncation of the essential catalytic domain in RetGC1, some missense mutations in LCA1 patients result in a severe loss of function by inactivating its catalytic activity and/or ability to interact with the activator proteins, GCAPs. The differences in rod sensitivities among patients were not explained by the biochemical properties of the mutants. However, the RetGC1 mutant alleles with remaining biochemical activity in vitro were associated with retained cone vision in vivo. We postulate a relationship between the level of RetGC1 activity and the degree of cone vision abnormality, and argue for cone function being the efficacy outcome in clinical trials of gene augmentation therapy in LCA1.


Assuntos
Guanilato Ciclase/metabolismo , Amaurose Congênita de Leber/enzimologia , Mutação de Sentido Incorreto , Células Fotorreceptoras de Vertebrados/metabolismo , Receptores de Superfície Celular/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Adolescente , Adulto , Domínio Catalítico , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Guanilato Ciclase/genética , Humanos , Lactente , Amaurose Congênita de Leber/terapia , Masculino , Receptores de Superfície Celular/genética , Adulto Jovem
19.
Nature ; 460(7257): 899-903, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19633653

RESUMO

The discovery of intrinsically photosensitive retinal ganglion cells has overthrown the long-held belief that rods and cones are the exclusive retinal photoreceptors. Intrinsically photosensitive retinal ganglion cells use melanopsin as the photopigment, and mediate non-image-forming visual functions such as circadian photoentrainment. In fish, in situ hybridization studies indicated that melanopsin is present in retinal horizontal cells-lateral association neurons critical for creating the centre-surround receptive fields of visual neurons. This raises the question of whether fish horizontal cells are intrinsically photosensitive. This notion was examined previously in flat-mount roach retina, but all horizontal-cell light response disappeared after synaptic transmission was blocked, making any conclusion difficult to reach. To examine this question directly, we have now recorded from single, acutely dissociated horizontal cells from catfish and goldfish. We found that light induced a response in catfish cone horizontal cells, but not rod horizontal cells, consisting of a modulation of the nifedipine-sensitive, voltage-gated calcium current. The light response was extremely slow, lasting for many minutes. Similar light responses were observed in a high percentage of goldfish horizontal cells. We have cloned two melanopsin genes and one vertebrate ancient (VA) opsin gene from catfish. In situ hybridization indicated that melanopsin, but less likely VA opsin, was expressed in the horizontal-cell layer of catfish retina. This intrinsic light response may serve to modulate, over a long timescale, lateral inhibition mediated by these cells. Thus, at least in some vertebrates, there are retinal non-rod/non-cone photoreceptors involved primarily in image-forming vision.


Assuntos
Peixes-Gato , Carpa Dourada , Luz , Células Horizontais da Retina/efeitos da radiação , Animais , Cálcio/metabolismo , Clonagem Molecular , Condutividade Elétrica , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/efeitos da radiação , Dados de Sequência Molecular , Nifedipino/farmacologia , Opsinas/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Células Horizontais da Retina/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/citologia , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Fatores de Tempo
20.
Nature ; 457(7227): 281-7, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19118382

RESUMO

A subset of retinal ganglion cells has recently been discovered to be intrinsically photosensitive, with melanopsin as the pigment. These cells project primarily to brain centres for non-image-forming visual functions such as the pupillary light reflex and circadian photoentrainment. How well they signal intrinsic light absorption to drive behaviour remains unclear. Here we report fundamental parameters governing their intrinsic light responses and associated spike generation. The membrane density of melanopsin is 10(4)-fold lower than that of rod and cone pigments, resulting in a very low photon catch and a phototransducing role only in relatively bright light. Nonetheless, each captured photon elicits a large and extraordinarily prolonged response, with a unique shape among known photoreceptors. Notably, like rods, these cells are capable of signalling single-photon absorption. A flash causing a few hundred isomerized melanopsin molecules in a retina is sufficient for reaching threshold for the pupillary light reflex.


Assuntos
Fótons , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos da radiação , Opsinas de Bastonetes/metabolismo , Potenciais de Ação/efeitos da radiação , Animais , Encéfalo/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pupila/fisiologia , Pupila/efeitos da radiação , Reflexo Pupilar/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa