Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Biol Int ; 48(8): 1124-1137, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38741520

RESUMO

The most common central nervous system (CNS) inflammatory disease is multiple sclerosis (MS), modeled using experimental autoimmune encephalomyelitis (EAE). Mesenchymal stem cells (MSCs) exhibit potent immunomodulatory capabilities, including the suppression of immune cell functions and anti-inflammatory cytokine production. Female C57BL/6 mice (8-10 weeks old) were divided into three groups: 1. Control, 2. Allogeneic MSCs (ALO) treatment, and 3. Syngeneic MSCs (SYN) treatment. To induce EAE, myelin oligodendrocyte glycoprotein was injected subcutaneously with complete Freund's adjuvant, followed by intraperitoneal pertussis toxin. On Days 6 and 12 postimmunization, the treatment groups received intraperitoneal injections of 2 × 106 MSCs. Daily clinical and weight assessments were performed, and on Day 25, the mice were euthanized. At the end of the period, brain histological analysis was conducted to quantify lymphocyte infiltration. T-cell characteristics were determined using enzyme-linked immunosorbent assay and Real-time polymerase chain reaction (RT-PCR). The assessment of transcription factor expression levels in the CNS was also performed using RT-PCR. Compared to the control group, both the allogeneic (ALO) and syngeneic (SYN) groups demonstrated significantly reduced disease progression. The maximum clinical scores for the control, ALO, and SYN groups were 4.4 ± 0.1, 2.4 ± 0.2, and 2.1 ± 0.2, respectively (ALO and SYN vs. Control: p < .001). In comparison to the control group, histological studies demonstrated that the allogeneic and syngeneic groups had less lymphocytic infiltration (ALO: 1.4 ± 0.1, SYN: 1.2 ± 0.2, and control: 2.8 ± 0.15; p < .001) and demyelination (ALO: 1.2 ± 0.15, SYN: 1.1 ± 0.1 and control: 2.9 ± 0.1, p < .001). ALO and SYN groups had lower expression of Th1 and Th17 cytokines and transcription factors (IFN-γ: 0.067, 0.051; STAT4: 0.189, 0.162; T-bet: 0.175, 0.163; IL-17: 0.074, 0.061; STAT3: 0.271, 0.253; ROR-γt: 0.163, 0.149, respectively) compared to the control group on Day 25 following EAE induction. Additionally, ALO and SYN groups compared to the control group, expressed more Th2 and Treg cytokines and transcription factors (IL-4: 4.25, 4.63; STAT6: 2.78, 2.96; GATA3: 2.91, 3.08; IL-27: 2.32, 2.46, IL-33: 2.71, 2.85; TGF-ß: 4.8, 5.05; IL-10: 4.71, 4.93; CTLA-4: 7.72, 7.95; PD1: 4.12,4.35; Foxp3: 3.82,4.08, respectively). This research demonstrated that MSCs possess the potential to be a therapeutic option for MS and related CNS inflammatory disorders. Their immunomodulatory properties, coupled with the observed reductions in disease severity, lymphocytic infiltration, and demyelination, indicate that MSCs could play a crucial role in altering the course of MS by mitigating inflammatory immune responses and promoting regulatory immune processes. These findings open up new possibilities for the development of MSC-based therapies for MS, and further investigation and clinical trials may be warranted to explore their efficacy and safety in human patients.


Assuntos
Encefalomielite Autoimune Experimental , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th1 , Células Th17 , Células Th2 , Animais , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células Th1/imunologia , Camundongos , Células Th17/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Tecido Adiposo/citologia , Citocinas/metabolismo
2.
Mol Biol Rep ; 51(1): 256, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302802

RESUMO

Introduction Multiple sclerosis (MS) is an autoimmune condition marked by inflammation and the loss of myelin in the central nervous system (CNS). The aim of this research was to understand how Thymoquinone regulate the molecular and cellular processes involved in controlling experimental autoimmune encephalomyelitis (EAE), which is an animal model often used to study MS. Methods Female C57BL/6 mice were split into different groups receiving different doses (low, medium, and high) of Thymoquinone simultaneously with EAE induction. Clinical scores and other measurements were observed daily throughout the 25-day post immunization. We assessed lymphocyte infiltration and demyelination in the spinal cord through histological staining, analyzed T-cell profiles using ELISA, and quantified the expression levels of transcription factors in the CNS using Real-time PCR. Results Thymoquinone prevented the development of EAE. Histological experiments revealed only a small degree of leukocyte infiltration into the CNS. Thymoquinone resulted in a notable reduction in the generation of IFN-γ, IL-17, and IL-6, while simultaneously increasing the production of IL-4, IL-10, and TGF-ß in Th2 and Treg cells. Results from Real-time PCR suggested Treatment with Thymoquinone decreased the expression of T-bet and ROR-γt while increasing the expression of Foxp3 and GATA3. Conclusion These findings showed that Thymoquinone could decrease both disease incidence and severity.


Assuntos
Benzoquinonas , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Feminino , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
3.
Mol Biol Rep ; 50(11): 8843-8853, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660318

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune central nervous system (CNS) disorder indicated by demyelination, chronic inflammation, and neuronal destruction. Regional demyelination, inflammation responses, scar development, and various axonal damage are pathological characteristics of MS. Curcumin is a hydrophobic polyphenol extracted from the rhizome of the turmeric plant. In addition to anti-inflammatory effects, beneficial therapeutic effects such as antioxidant, anti-cancer and nerve protection have also been seen from this compound. The purpose of the current investigation was to provide light on the potential benefits of Curcumin in treating experimental autoimmune encephalomyelitis (EAE), the animal model of MS. METHODS AND RESULTS: in Female C57BL/6 mice were used to induce EAE through myelin oligodendroglial glycoprotein (MOG). Curcumin doses of 100 and 200 mg/kg were administered orally in the treatment groups starting on the first day of EAE induction. Brains and splenocytes were extracted from euthanized animals on day 25 following EAE induction. Demyelination and leukocyte infiltration, proliferation, cytokine, and gene expression profiles were assessed. Our findings demonstrate that both low and high doses of Curcumin decreased the progression of EAE. Histological analyses revealed low infiltration of leukocytes into the CNS. Curcumin therapy enhanced Th2 and Treg cell secretion of IL-4, IL-10, and TGF-ß although considerably decreasing IFN-γ and TNF-α. Curcumin-induced Th2 and Treg cell cytokine production and transcription factor gene expression (IL-13, GATA3, STAT6 and IL-35, CTLA4, Foxp3) and anti-inflammatory cytokines (IL-27, IL-33). CONCLUSION: Overall, these findings provide additional evidence that Curcumin can slow disease development and alleviate symptoms in EAE through stimulating Treg and Th2 cell polarization. They support Curcumin's potential therapeutic role in MS.


Assuntos
Curcumina , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Esclerose Múltipla/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Especiarias , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Imunidade , Anti-Inflamatórios/uso terapêutico , Gravidade do Paciente
4.
Cytokine ; 158: 156015, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041312

RESUMO

Interleukin-33 (IL-33) is a member of the IL-1 family and plays an ambivalent role in autoimmune diseases. IL-33 signals via the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, NK cells, and T lymphocyte cells. The vital role of IL-33 as an active component gives rise to aberrant local and systemic damage which has been demonstrated in numerous inflammatory disorders and immune-mediated pathological conditions including multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, Sjogren's syndrome, inflammatory bowel disease (IBD), etc. IL-33/ST2 axis can up-regulate pro-inflammatory cytokine release in autoimmune disease, however, in some metabolic diseases like diabetes mellitus type 1 IL-33 can be considered an anti-inflammatory cytokine. The purpose of this review is to discuss selected studies on IL-33/ST2 axis in autoimmune diseases and its potential role as a pathogenic or protective cytokine.


Assuntos
Doenças Autoimunes , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Citocinas , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo
5.
Int J Neurosci ; : 1-19, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36369838

RESUMO

Multiple sclerosis (MS) is a neurological disorder that causes disability and paralysis, especially among young adults. Although interactions of several factors, such as viral infections, autoimmunity, genetic and environmental factors, performance a role in the beginning and progression of the disease, the exact cause of MS is unknown to date. Different immune cells such as Th1 and Th17 play an impressive role in the immunopathogenesis of MS, while, regulatory cells such as Th2 and Treg diminish the severity of the illness. Sex hormones have a vital role in many autoimmune disorders, including multiple sclerosis. Testosterone, estrogen and progesterone have various roles in the progress of MS, which higher prevalence of disease in women and more severe in men reveals the importance of sex hormones' role in this disease. Vitamin D after chemical changes in the body, as an active hormone called calcitriol, plays an important role in regulating immune responses and improves MS by modulating the immune system. The optimum level of calcium in the body with vitamin D modulates immune responses and calcium as an essential ion in the body plays a key role in the treatment of autoimmune diseases. The interaction between vitamin D and sex hormones has protective and therapeutic effects against MS and functional synergy between estrogen and calcitriol occurs in disease recovery. Moreover, vitamin D and calcium interact with each other to regulate the immune system and shift them to anti-inflammatory responses.

6.
Adv Exp Med Biol ; 1286: 87-105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33725347

RESUMO

Gut microbiota has essential roles in the prevention and progression of multiple sclerosis (MS). The association between the gut microbiota and the central nervous system (CNS) or immune system response of MS patients has been documented in many studies. The composition of the gut microbiota could lead to sensitization or resistance against promotion and development of MS disease. Probiotics are the major part of gut microflorapopulation and could be substituted with tolerogenic probiotics that protect the CNS against autoimmune responses. Tolerogenic probiotics with anti-inflammatory and immuno-modulatory properties have effects on intestinal flora and can reestablish regulatory mucosal and systemic immune responses. Probiotics are able to prevent and restore excessive activation of inflammatory responses, especially autoreactive T cells and inflammatory cytokines. Tolerogenic probiotics, through induction of regulatory T cells and increase of anti-inflammatory cytokines, play a crucial role in controlling inflammation and maintaining tolerance and hemostasis. Therefore, probiotics can be considered as a preventive or therapeutic tool in MS. In the present review, we focus on the immunoregulatory effects of tolerogenic probiotics on the severity of disease, as well as Th1, Th2, and Treg populations in different experimental and human studies of MS.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla , Probióticos , Citocinas , Humanos , Tolerância Imunológica , Esclerose Múltipla/tratamento farmacológico , Probióticos/uso terapêutico
7.
IUBMB Life ; 72(11): 2366-2381, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33006813

RESUMO

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune inflammatory disease with no absolute cure. Although the exact etiopathogenesis of SLE is still enigmatic, it has been well demonstrated that a combination of genetic predisposition and environmental factors trigger a disturbance in immune responses and thereby participate in the development of this condition. Almost all available therapeutic strategies in SLE are primarily based on the administration of immunosuppressive drugs and are not curative. Mesenchymal stromal cells (MSCs) are a subset of non-hematopoietic adult stem cells that can be isolated from many adult tissues and are increasingly recognized as immune response modulating agents. MSC-mediated inhibition of immune responses is a complex mechanism that involves almost every aspect of the immune response. MSCs suppress the maturation of antigen-presenting cells (DC and MQ), proliferation of T cells (Th1, T17, and Th2), proliferation and immunoglobulin production of B cells, the cytotoxic activity of CTL and NK cells in addition to increasing regulatory cytokines (TGF-ß and IL10), and decreasing inflammatory cytokines (IL17, INF-ϒ, TNF-α, and IL12) levels. MSCs have shown encouraging results in the treatment of several autoimmune diseases, in particular SLE. This report aims to review the beneficial and therapeutic properties of MSCs; it also focuses on the results of animal model studies, preclinical studies, and clinical trials of MSC therapy in SLE from the immunoregulatory aspect.


Assuntos
Imunidade/imunologia , Lúpus Eritematoso Sistêmico/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia
8.
J Cell Biochem ; 118(12): 4831-4835, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28544067

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by production of inflammatory cytokines and autoreactive antibodies due to the loss of immune tolerance. Recognition of self-nucleic acids by intracellular Toll-like receptors (TLRs) can overactivate immune responses and this abnormal activation of TLRs contributes to the pathogenesis of the disease. In recent years, anti-inflammatory and immunomodulatory effects of 1,25-dihydroxyvitamin D3 (VitD3) on the immune system has received particular attention. The present study investigated the effects of vitamin D3 on the expression of TLR3, TLR7, and TLR9 in SLE patients. Study participants included 20 SLE patients and 20 age- and sex-matched healthy controls. Peripheral blood mononuclear cells (PBMCs) were isolated and cultured in the presence or absence of vitamin D3 (50 nM). Then RNA was extracted, cDNA was synthesized and gene expression levels of TLR3, TLR7, and TLR9 were assessed using real-time PCR. Up-regulated expression levels of TLR7 and TLR9 were observed in the PBMCs of SLE patients in comparison with controls. Culturing PBMCs with vitamin D3 significantly down-regulated the expression of TLR3 (8.86 ± 4.2 for SLE patients vs. 45.34 ± 18.6 for control; P = 0.03), TLR7 (17.91 ± 7.7 for SLE patients vs. 242.37 ± 89.6 for controls; P = 0.0001) and TLR9 (4.67 ± 1.9 for SLE patients vs. 8.9 ± 1.5 for controls; P = 0.007) in SLE patients in comparison with healthy controls. The results of the current study suggest that vitamin D3 could exert some of its immunomodulatory effects in SLE patients via affecting the expression levels of some TLRs. J. Cell. Biochem. 118: 4831-4835, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Colecalciferol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Receptores Toll-Like/biossíntese , Adulto , Células Cultivadas , Feminino , Humanos , Leucócitos Mononucleares/patologia , Lúpus Eritematoso Sistêmico/patologia , Masculino , Pessoa de Meia-Idade
9.
APMIS ; 132(6): 452-464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563150

RESUMO

Multiple sclerosis (MS) is a condition where the central nervous system loses its myelin coating due to autoimmune inflammation. The experimental autoimmune encephalomyelitis (EAE) simulates some aspects of human MS. Boswellic acids are natural compounds derived from frankincense extract, known for their anti-inflammatory properties. The purpose of this research was to investigate therapeutic potential of boswellic acids. Mice were divided into three groups: low-dose (LD), high-dose (HD), and control groups (CTRL). Following EAE induction, the mice received daily doses of boswellic acid for 25 days. Brain tissue damage, clinical symptoms, and levels of TGF-ß, IFN-γ, and IL-17 cytokines in cell cultured supernatant of lymphocytes were assessed. Gene expression of transcription factors in brain was measured using real-time PCR. The levels of brain demyelination were significantly lower in the treatment groups compared to the CTRL group. Boswellic acid reduced the severity and duration of EAE symptoms. Furthermore, boswellic acid decreased the amounts of IFN-γ and IL-17, also the expression of T-bet and ROR-γt in brain. On the contrary, it increased the levels of TGF-ß and the expression FoxP3 and GATA3. Our findings suggest that boswellic acids possess therapeutic potential for EAE by modulating the immune response and reducing inflammation.


Assuntos
Encefalomielite Autoimune Experimental , Triterpenos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Camundongos , Feminino , Camundongos Endogâmicos C57BL , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/imunologia , Citocinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
10.
APMIS ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030955

RESUMO

Multiple sclerosis is a demyelinating neurodegenerative disease, and its animal model, experimental autoimmune encephalomyelitis (EAE), exhibits immunological and clinical similarities. The study aimed to examine mechanisms underlying therapeutic effects of mesenchymal stem cell administration in EAE. C57BL/6 mice were separated into control and treatment groups (T1, T2, and T3); EAE was induced in all animals. Clinical examinations were conducted daily, and on 25th day, animals were sacrificed, and spinal cord was stained for histological analysis. Additionally, spleen cell proliferation assay, assessments of cytokine, and gene expression in both spinal cord and spleen cells were performed. The results indicated a significant reduction in clinical symptoms among treatment groups compared to control group. Histological analyses revealed decreased infiltration of lymphocytes into the spinal cord and reduced demyelinated areas in treatment groups compared to control group. Cytokine production of IL-10, TGF-ß, and IL-4 were significantly enhanced and IFN-γ and TNF-α in treatment groups were decreased relative to control group. Also, gene expression of CTLA-4, PD-1, IL-27, and IL-33 indicated a significant increase in treatment groups. The administration of MSCs significantly improved clinical symptoms, attenuated inflammation, and reduced spinal cord demyelination in EAE, suggesting a potential protective effect on disease progression.

11.
Immun Inflamm Dis ; 12(3): e1213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477663

RESUMO

Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.


Assuntos
Berberina , Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Citocinas , Imunomodulação
12.
Immun Inflamm Dis ; 11(1): e766, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36705421

RESUMO

INTRODUCTION: Among the most frequent demyelinating autoimmune disorders of the central nervous system (CNS) is multiple sclerosis. Experimental autoimmune encephalomyelitis (EAE) is used as an animal model of multiple sclerosis. Berberine is an alkaloid found in some medicinal plants with anti-inflammatory effects. METHODS: C57BL/6 female mice were used and divided into three groups: (1) The control group received PBS, (2) the low-dose treatment group received 10 mg/kg of berberine, and (3) The high-dose treatment group received 30 mg/kg of berberine. Myelin Oligodendrocyte Glycoprotein and complete Freund's adjuvant were subcutaneously administered to induce EAE. Mice were given intraperitoneal injections of pertussis toxin on the day of immunization and 2 days later. Histological studies showed low lymphocyte infiltration and demyelination of CNS in the treated groups. RESULTS: The clinical scores of the treatment group with low-dose berberine (T1: 2 ± 0.13) and high-dose berberine (T2: 1.5 ± 0.14) were significantly (p < .001) lower than the control group (CTRL: 4.5 ± 0.13). Treatment groups decreased pro-inflammatory cytokines (IFN-γ, TNF-α, interleukin [IL]-17) (p < .001) as well as increased anti-inflammatory cytokine expression (IL-4, IL-10, IL-27, IL-33, IL-35, TGF-ß) (p < .01) when compared to the CTRL group. Treatment groups with berberine reduced expression of the Th1 and Th17 cytokines and transcription factors (p < .001) and increased expression of transcription factors and Th2 and Treg cytokines (p < .01) in contrast to CTRL group. CONCLUSION: Berberine appears to have a protective effect on disease development and alleviating disease status in EAE, which appears to be due to the cell expansion and function of Treg and Th2 cells in addition to berberine's anti-inflammatory properties.


Assuntos
Berberina , Encefalomielite Autoimune Experimental , Linfócitos T Reguladores , Células Th2 , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Berberina/farmacologia , Berberina/uso terapêutico , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Doenças Neuroinflamatórias , Fatores de Transcrição
13.
Acta Neurobiol Exp (Wars) ; 82(3): 273-283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36214710

RESUMO

Multiple sclerosis (MS) is the most typical chronic inflammatory, autoimmune demyelinating disease of the central nervous system (CNS) which leads to physical dysfunction and paralysis in patients. A commonly used animal model for this disease is experimental autoimmune encephalomyelitis (EAE). Daphnetin (7,8­dihydroxycoumarin) has been reported to exert various pharmacological activities, such as being neuroprotective and anti­inflammatory, together with having antioxidant, anticancer, and antiviral properties. Eight­week­old C57BL/6 female mice were segregated into 3 groups, namely 1) a control group receiving PBS, 2) a low­dose treatment group receiving 2 mg/kg of daphnetin, and, 3) a high­dose treatment group receiving 8 mg/kg of daphnetin. EAE was induced with a subcutaneous injection of a combination of myelin oligodendrocyte glycoprotein (MOG) and complete Freund's adjuvant. On the day of induction, and again two days later, mice were injected intraperitoneally with pertussis toxin. Histological studies showed low lymphocyte infiltration and demyelination in the high and low dose treated groups. The ratio of spleen Treg cells and the levels of IL­4, IL­10, TGF­ß, and IL­33 enhanced significantly in the treatment group related to the control group. Furthermore, both IL­27 and IL­35 were also enhanced significantly in the treatment group compared to the control group. Moreover, the levels of IFN­Î³, TNF­α, and IL­17 displayed a noticeable reduction in the daphnetin treated group. Daphnetin appears to improve the disease by increasing the expression of anti­inflammatory cytokines and transcription factors (IL­4, IL­10, IL­33, GATA3, TGF­ß, FoxP3), and reducing the production of pro­inflammatory cytokines and transcription factors (IFN­Î³, STAT4, T­bet, IL­17, STAT3, ROR­Î³t, TNF­α).


Assuntos
Encefalomielite Autoimune Experimental , Umbeliferonas , Animais , Anti-Inflamatórios , Antioxidantes/metabolismo , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Adjuvante de Freund , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-27/metabolismo , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Toxina Pertussis , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Células Th17/metabolismo , Células Th17/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Umbeliferonas/farmacologia
14.
Acta Neurol Belg ; 121(6): 1685-1692, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32812134

RESUMO

Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS). Kombucha is produced by the fermentation of sugared tea with a symbiotic culture of bacteria and yeasts. This research was designed to reveal the therapeutic impact and the molecular and cellular processes determining the effect of kombucha on MS alleviation in an experimental autoimmune encephalomyelitis (EAE). The EAE was induced using myelin oligodendrocyte glycoprotein (MOG35-55) peptide emulsified in CFA and injected subcutaneously over two flank areas in C57BL/6 mice. In addition, pertussis toxin was injected intraperitoneally and repeated 48 h later. Treatment groups were received three different doses of kombucha (K1: low dose, K2: medium dose and K3: high dose) to obtain a maximum protection. Clinical scores and other criteria were followed daily for the 25 days. At the end of the course, T-helper-related cytokines (IFN-γ, IL-17, IL-4, and TGF-ß) were measured through ELISA. Moreover, nitric oxide (NO) concentration in spinal cord tissue was detected. The severity of disease on the peak of disease in K1, K2, and K3 groups were 3.4 ± 0.18 and 2.6 ± 0.18 and 2 ± 0.14 respectively, compared to the CTRL group with 4.5 ± 0.19 (p < 0.001). Kombucha increased production of interleukin IL-4 (K1 = 95 ± 5, K2 = 110 ± 10, K3 = 115 ± 5 and CTRL = 65 ± 5; p < 0.05) and TGF-ß (K1 = 1750 ± 80, K2 = 2050 ± 65, K3 = 2200 ± 75 and CTRL = 850 ± 85; p < 0.001) but concurrently resulted in a remarkable reduction in the production of IFN-γ (K1 = 950 ± 70, K2 = 890 ± 65, K3 = 850 ± 85 and CTRL = 3850 ± 115; p < 0.001) and IL-17 (K1 = 1250 ± 75, K2 = 1050 ± 90, K3 = 970 ± 80 and CTRL = 6450 ± 125; p < 0.001). Moreover, NO concentration in spinal cord tissue in the treatment groups was significantly less than the control group (K1: 35.42 ± 2.1, K2 = 31.21 ± 2.2, K3 = 28.24 ± 2.6 and CTRL = 45.25 ± 2.7; p < 0.05). These results supported that kombucha could reduce the severity of disease in an EAE model through motivating polarization of CD4+ T cells by induction of IL-4 and TGF-ß as well as inhibition of IFN-γ and IL-17.


Assuntos
Encefalomielite Autoimune Experimental/dietoterapia , Encefalomielite Autoimune Experimental/imunologia , Chá de Kombucha , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Células Cultivadas , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th2/metabolismo
15.
Neurol Res ; 41(10): 943-957, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31402771

RESUMO

Multiple sclerosis (MS) is a complex inflammatory and demyelinating disease of the central nervous system (CNS) frequently starts in young adulthood. Demyelination, inflammatory and axonal damage in the CNS is the pathological hallmark of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. 1, 25-dihydroxyvitamin D3 (Vitamin D3) is involved in calcium regulation, phosphorus homeostasis, and bone mineralization. In addition, vitamin D3 has potential inhibitory effects on immune cells in various inflammatory and autoimmunity disease. C57BL/6 female mice were divided into prevention groups (low, middle and high doses) and treatment groups (middle and high doses). Prevention groups received vitamin D3 2 weeks before EAE induction, and treatment groups were treated with vitamin D3 simultaneous with EAE induction. Vitamin D3 inhibits the development of EAE in a dose-dependent manner. Histological studies revealed reduced demyelination and limited infiltration into CNS, moreover vitamin D3 increased the production of IL-4, IL-10, and TGF-ß, while a significant reduction in the production of IFN-γ, IL-6, TNF-α, and IL-17 was observed. Flow cytometry results for CD4+ T cell subsets in compliance with ELISA cytokine assay results showed a significant decrease in the percentage of Th1 and Th17, but also a significant increase in the percentage of Th2 and Treg for middle and high dose vitamin D3 treated mice. Real-time PCR results indicated that middle and high dose vitamin D3 treatment reduced T-bet and ROR-γt expression, but enhanced GATA3 and Foxp3 expression. Real-Time PCR results in CNS for T cell subsets related cytokines and transcription factors supported the results of flow cytometry and ELISA. This study indicated that middle and high doses of vitamin D3 deviate the balance between Th1/Th2 and Th17/Treg to Th2 and Treg. Moreover, vitamin D3 could reduce the incidence and severity of EAE clinical disease.


Assuntos
Encéfalo/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Medula Espinal/efeitos dos fármacos , Vitamina D/análogos & derivados , Animais , Encéfalo/imunologia , Encéfalo/patologia , Citocinas/efeitos dos fármacos , Citocinas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/imunologia , Medula Espinal/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vitamina D/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa