Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Anal Chem ; 96(5): 1813-1824, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271678

RESUMO

Single-atom nanozymes (SAzymes) have been greatly developed for rapid detection, owing to their rich active sites and excellent catalytic activity. Although several excellent reviews concentrating on SAzymes have been reported, they mainly focused on advanced synthesis, sensing mechanisms, and biomedical applications. To date, few reviews elaborate on the promising applications of SAzymes in food safety inspection and food nutrition evaluation. In this paper, we systematically reviewed the enzyme-like activity of SAzymes and the catalytic mechanism, in addition to recent research advances of SAzymes in the domain of food safety inspection and food nutrition evaluation in the past few years. Furthermore, current challenges hampering practical applications of SAzymes in food assay are summarized and analyzed, and possible research areas focusing on SAzyme-based sensors in rapid food testing are also proposed.

2.
Anal Chem ; 96(21): 8221-8233, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38740384

RESUMO

Compared with traditional "lock-key mode" biosensors, a sensor array consists of a series of sensing elements based on intermolecular interactions (typically hydrogen bonds, van der Waals forces, and electrostatic interactions). At the same time, sensor arrays also have the advantages of fast response, high sensitivity, low energy consumption, low cost, rich output signals, and imageability, which have attracted widespread attention from researchers. Nanozymes are nanomaterials which own enzyme-like properties. Because of the adjustable activity, high stability, and cost effectiveness of nanozymes, they are potential candidates for construction of sensor arrays to output different signals from analytes through the chemoresponse of colorants, which solves the shortcomings of traditional sensors that they cannot support multiple detection and lack universality. Recently, a sensor array based on nanozymes as nonspecific recognition receptors has attracted much more attention from researchers and has been applied to precise recognition of proteins, bacteria, and heavy metals. In this perspective, attention is given to nanozymes and the regulation of their enzyme-like activity. Particularly, the building principles and methods for sensor arrays based on nanozymes are analyzed, and the applications are summarized. Finally, the approaches to overcome the challenges and perspectives are also presented and analyzed for facilitating further research and development of nanozyme sensor arrays. This perspective should be helpful for gaining insight into research ideas within the field of nanozyme sensor arrays.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Nanoestruturas/química , Enzimas/metabolismo , Enzimas/química
3.
Nano Lett ; 23(6): 2427-2435, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36715488

RESUMO

Neurotransmitter exocytosis of living cells plays a vital role in neuroscience. However, the available amperometric technique with carbon fiber electrodes typically measures exocytotic events from one cell during one procedure, which requires professional operations and takes time to produce statistical results of multiple cells. Here, we develop a functionally collaborative nanostructure to directly measure the neurotransmitter dopamine (DA) exocytosis from living rat pheochromocytoma (PC12) cells. The functionally collaborative nanostructure is constructed of metal-organic framework (MOF)-on-nanowires-on-graphene oxide, which is highly sensitive to DA molecules and enables direct detection of neurotransmitter exocytosis. Using the microsensor, the exocytosis from PC12 cells pretreated with the desired drugs (e.g., anticoronavirus drug, antiflu drug, or anti-inflammatory drug) has been successfully measured. Our achievements demonstrate the feasibility of the functionally collaborative nanostructure in the real-time detection of exocytosis and the potential applicability in the highly efficient assessment of the modulation effects of medications on exocytosis.


Assuntos
Dopamina , Nanoestruturas , Animais , Ratos , Eletrodos , Exocitose/fisiologia , Neurotransmissores
4.
Angew Chem Int Ed Engl ; 63(16): e202318748, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38374765

RESUMO

Single-atom catalysts (SACs), distinguished by their maximum atom efficiency and precise control over the coordination and electronic properties of individual atoms, show great promise in electrocatalysis. Gaining a comprehensive understanding of the electrochemical performance of SACs requires the screening of electron transfer process at micro/nano scale. This research pioneers the use of electrogenerated chemiluminescence microscopy (ECLM) to observe the electrocatalytic reactions at individual SACs. It boasts sensitivity at the single photon level and temporal resolution down to 100 ms, enabling real-time capture of the electrochemical behavior of individual SACs during potential sweeping. Leveraging the direct correlation between ECL emission and heterogeneous electron transfer processes, we introduced photon flux density for quantitative analysis, unveiling the electrocatalytic efficiency of individual SACs. This approach systematically reveals the relationship between SACs based on different metal atoms and their peroxidase (POD)-like activity. The outcomes contribute to a fundamental understanding of SACs and pave the way for designing SACs with diverse technological and industrial applications.

5.
Anal Chem ; 95(29): 10844-10858, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37438259

RESUMO

Natural enzymes are crucial in biological systems and widely used in biology and medicine, but their disadvantages, such as insufficient stability and high-cost, have limited their wide application. Since Fe3O4 nanoparticles were found to show peroxidase-like activity, researchers have designed and developed a growing number of nanozymes that mimic the activity of natural enzymes. Nanozymes can compensate for the defects of natural enzymes and show higher stability with lower cost. Iron, a nontoxic and low-cost transition metal, has been used to synthesize a variety of iron-based nanozymes with unique structural and physicochemical properties to obtain different enzymes mimicking catalytic properties. In this perspective, catalytic mechanisms, activity modulation, and their recent research progress in sensing, tumor therapy, and antibacterial and anti-inflammatory applications are systematically presented. The challenges and perspectives on the development of iron-based nanozymes are also analyzed and discussed.


Assuntos
Nanopartículas , Nanoestruturas , Ferro , Catálise , Antibacterianos , Nanoestruturas/química
6.
Anal Chem ; 95(34): 12648-12655, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37599579

RESUMO

Single-atom catalysts (SACs), a novel kind of electrocatalysts with full metal utilization, have been developed as unique signal amplifiers in several sensing platforms. Herein, based on theoretical prediction of the oxygen reduction reaction (ORR) mechanism on different atom sites, we constructed dual-atomic-site catalysts (DACs), Fe/Mn-N-C, to catalyze luminol-dissolved oxygen electrochemiluminescence (ECL). Computational simulation indicated that the weak adsorption of OH* on a single Fe site was overcome by introducing Mn as the secondary metallic active site, resulting in a synergic dual-site cascade mechanism. The superior catalytic activity of Fe/Mn-N-C DACs for the ORR was proven by the highly efficient cathodic luminol ECL, surpassing the performance of single-site catalysts (SACs), Fe-N-C and Mn-N-C. Furthermore, the ECL system, enhanced by a cascade reaction, exhibited remarkable sensitivity to ascorbic acid, with a detection limit of 0.02 nM. This research opens up opportunities for enhancing both the ECL efficiency and sensing performance by employing a rational atomic-scale design for DACs.

7.
Small ; 19(29): e2300042, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37046185

RESUMO

Modifying sulfur cathodes with lithium polysulfides (LiPSs) adsorptive and electrocatalytic host materials is regarded as one of the most effective approaches to address the challenging problems in lithium-sulfur (Li-S) batteries. However, because of the high operating voltage window of Li-S batteries from 1.7 to 2.8 V, most of the host materials cannot participate in the sulfur redox reactions within the same potential region, which exhibit fixed or single functional property, hardly fulfilling the requirement of the complex and multiphase process. Herein, Chevrel phase Mo6 S8 nanosheets with high electronic conductivity, fast ion transport capability, and strong polysulfide affinity are introduced to sulfur cathode. Unlike most previous inactive hosts with a fixed affinity or catalytic ability toward LiPSs, the reaction involving Mo6 S8 is intercalative and the adsorbability for LiPSs as well as the ionic conductivity can be dynamically enhanced via reversible electrochemical lithiation of Mo6 S8 to Li-ion intercalated Lix Mo6 S8 , thereby suppressing the shuttling effect and accelerating the conversion kinetics. Consequently, the Mo6 S8 nanosheets act as an effective dynamic-phase promoter in Li-S batteries and exhibit superior cycling stability, high-rate capability, and low-temperature performance. This study opens a new avenue for the development of advanced hosts with dynamic regulation activity for high performance Li-S batteries.

8.
Anal Chem ; 94(3): 1499-1509, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35014271

RESUMO

Nanozymes are a kind of nanomaterial mimicking enzyme catalytic activity, which has aroused extensive interest in the fields of biosensors, biomedicine, and climate and ecosystems management. However, due to the complexity of structures and composition of nanozymes, atomic scale active centers have been extensively investigated, which helps with in-depth understanding of the nature of the biocatalysis. Single atom nanozymes (SANs) cannot only significantly enhance the activity of nanozymes but also effectively improve the selectivity of nanozymes owing to the characteristics of simple and adjustable coordination environment and have been becoming the brightest star in the nanozyme spectrum. The SANs based sensors have also been widely investigated due to their definite structural features, which can be helpful to study the catalytic mechanism and provide ways to improve catalytic activity. This perspective presents a comprehensive understanding on the advances and challenges on SANs based sensors. The catalytic mechanisms of SANs and then the sensing application from the perspectives of sensing technology and sensor construction are thoroughly analyzed. Finally, the major challenges, potential future research directions, and prospects for further research on SANs based sensors are also proposed.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Catálise , Ecossistema , Nanoestruturas/química
9.
Anal Chem ; 93(3): 1221-1231, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33371664

RESUMO

Single-atom nanozymes (SANs) are one of the newest generations of nanozymes, which have been greatly developed in the past few years and exploited widely for many applications, such as biosensing, disease diagnosis and therapy, bioimaging, and so on. SANs, possessing dispersed single-atom structures and a well-defined coordination environment, exhibit remarkable catalytic performance with both high activity and stability. In this paper, the most recent progress in SANs is reviewed in terms of their advanced synthesis, characterization, functional mechanisms, performance validation/optimization, and biomedical applications. Several technical challenges hindering practical applications of SANs are analyzed, and possible research directions are also proposed for overcoming the challenges.


Assuntos
Pesquisa Biomédica , Materiais Biomiméticos/química , Técnicas Biossensoriais , Nanoestruturas/química
10.
Analyst ; 145(21): 7063-7070, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33103713

RESUMO

Glutathione (GSH) plays an important role in the biochemical defense system of the human body. Designing an exceptional probe to detect trace amounts of GSH is of great significance for studying the oxidative stress reaction and related diseases. In this study, a selective and sensitive orange-red emitting copper nanocluster(CuNC)-based fluorescent probe for the detection of GSH was devised in the matrix of polyvinylpyrrolidone (PVP) using hydrazine hydrate (HYD) as the reducing agent and 2-mercaptobenzothiazole (MBT) as the stabilizer. A peaceable without external assistance method (room temperature reaction) was employed to synthesize fluorescent CuNCs with orange-red luminescence emission at 606 nm upon excitation at 377 nm. The fluorescence intensity of CuNCs was found to decrease or even quench by the addition of GSH, which indicated the stronger binding ability of -SH in GSH with the CuNCs losing the protection of PVP. Based on this principle, the present sensor system exhibits a good linear response towards GSH ranging from 0.10 to 40 µM, and the limit of detection was found to be 12.4 nM. Moreover, due to the excellent selectivity and high sensitivity of the GSH sensor, it might act as a potential probe for the detection of GSH in the lysosomal environment of tumor cells. Thus, this strategy has a promising application potential for the early identification and prevention of cancer with low toxicity and good stability.


Assuntos
Cobre , Nanopartículas Metálicas , Corantes Fluorescentes , Glutationa , Humanos , Temperatura
11.
Chemphyschem ; 19(10): 1173-1179, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29356266

RESUMO

General anesthetics are essential in many areas, however, the cellular mechanisms of anesthetic-induced amnesia and unconsciousness are incompletely understood. Exocytosis is the main mechanism of signal transduction and neuronal communication through the release of chemical transmitters from vesicles to the extracellular environment. Here, we use disk electrodes placed on top of PC12 cells to show that treatment with barbiturate induces fewer molecules released during exocytosis and changes the event dynamics perhaps by inducing a less stable fusion pore that is prone to close faster during partial exocytosis. Larger events are essentially abolished. However, use of intracellular vesicle impact electrochemical cytometry using a nano-tip electrode inserted into a cell shows that the distribution of vesicle transmitter content does not change after barbiturate treatment. This indicates that barbiturate selectively alters the pore size of larger events or perhaps differentially between types of vesicles. Alteration of exocytosis in this manner could be linked to the effects of general anesthetics on memory loss.


Assuntos
Anestésicos Gerais/farmacologia , Barbitúricos/farmacologia , Catecolaminas/farmacologia , Modelos Biológicos , Animais , Células Cultivadas , Técnicas Eletroquímicas , Eletrodos , Exocitose/efeitos dos fármacos , Células PC12 , Ratos
12.
Phys Chem Chem Phys ; 19(11): 7498-7505, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28067361

RESUMO

To solve the barriers of poor rate capability and inferior cycling stability for the MnO2 anode in lithium ion batteries, we present a highly flexible membrane anode employing two-dimensional (2D) reduced graphene oxide sheets (rGO) and a three-dimensional (3D) MnO2-reduced graphene oxide-carbon nanotube nanocomposite (MGC) by a vacuum filtration and thermal annealing approach. All the components in the 2D/3D thin film anode have a synergistic effect on the improved performance. The initial discharge specific capacity of the electrode with the MnO2 content of 56 wt% was 1656.8 mA h g-1 and remains 1172.5 mA h g-1 after 100 cycles at a density of 100 mA g-1. On enhancing the density to 200 mA g-1, the membrane-electrode still exhibits a large reversible discharging capacity of ∼948.9 mA h g-1 after 300 cycles. Moreover, the flexible Li-ion battery with a large area also shows excellent electrochemical performance in different bending positions, which provides the potential for wearable energy storage devices.

13.
Analyst ; 139(19): 4917-23, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25078888

RESUMO

A novel strategy for the quantitative determination of human colon cancer DLD-1 cells utilizing an electrochemical aptasensor was developed by effective surface recognition between Mucin 1 glycoprotein over-expressed on the cell membrane and MUC-1 aptamer (MUC-1) bound on carbon nanospheres (CNSs). An MTT assay revealed that the as-prepared CNSs by green route exhibited satisfactory biocompatibility for cell viability, providing a suitable platform for the cell adhesion study. Furthermore, using CNSs as a sensing layer accelerated electron transfer and provided a highly stable matrix for the convenient conjugation of target MUC-1 aptamer, considerably amplifying the electrochemical signals. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were applied to assess the optimal conditions and detection performance of the as-fabricated aptasensor. The attachment of colon cancer DLD-1 cells onto the MUC-1 aptamer immobilized CNSs led to increased EIS responses, which changed linearly in cell concentration ranging from 1.25 × 10(2) to 1.25 × 10(6) cells per mL with a lower detection limit of 40 cells per mL. With this method, colon cancer DLD-1 cells can be easily distinguished from normal cells, Human astrocytes 1800. The novel aptasensor revealed high specificity to DLD-1 cells. Furthermore, the aptasensor described here showed good reproducibility and high stability because of the CNSs of high stability and biocompatibility. The proposed protocols are a promising technique for the early monitoring of human colon cancer, and might have potential clinical applications such as cancer diagnosis, drug screening.


Assuntos
Aptâmeros de Nucleotídeos/química , Carbono/química , Separação Celular/métodos , Mucina-1/química , Nanosferas/química , Linhagem Celular , Separação Celular/instrumentação , Sobrevivência Celular/efeitos dos fármacos , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Eletrodos , Humanos , Nanosferas/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier
14.
ACS Appl Mater Interfaces ; 16(24): 31341-31347, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38853459

RESUMO

Sulfide-based solid electrolytes with high ionic conductivity have attracted a lot of attention. However, the incompatibility and interfacial instability of sulfides with the lithium metal anode have emerged as pivotal constraints on their development. To address this challenge, we proposed and successfully synthesized the BH4- doped argyrodite-type electrolyte Li6PS5Cl0.9(BH4)0.1 by mechanical ball milling and annealing. This electrolyte not only exhibits an exceptionally high ionic conductivity of 2.83 × 10-3 S cm-1 at 25 °C but also demonstrates outstanding electrochemical stability. The Li/Li6PS5Cl0.9(BH4)0.1/Li symmetric cell can stably run for more than 400 h at a current density of 0.2 mA cm-2. In sharp contrast, although the F- doped sample, Li6PS5Cl0.3F0.7, can highly improve Li6PS5Cl's electrochemical stability, the ionic conductivity will reduce dramatically to 6.63 × 10-4 S cm-1. The stepwise current method reveals a critical current density of 3.5 mA cm-2 for Li6PS5Cl0.9(BH4)0.1, which makes it a competitive sulfide-based solid electrolyte. This research offers valuable insights for designing new borohydride-containing solid electrolytes.

15.
Anal Chim Acta ; 1295: 342322, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38355223

RESUMO

BACKGROUND: The advancement of highly sensitive electrochemiluminescence (ECL) biosensors has garnered escalating interest over time. Owing to the distinctive physicochemical attributes, the signal amplification strategy facilitated by functional nanomaterials has achieved notable milestones. Single-atom catalysts (SACs), featuring atomically dispersed metal active sites, have garnered significant attention. SACs offer unprecedented control over active sites and surface structures at the atomic level. However, to fully harness their potential, ongoing efforts focus on strategies to enhance the catalytic performance of SACs, profoundly influencing both the sensitivity and selectivity of SACs-based sensing platforms. RESULTS: In this study, we focused on the synthesis and application of Fe-Co-PNC dual-atom catalysts (DACs) with the incorporation of phosphorus, aiming to enhance catalytic efficiency, particularly in the context of the oxygen reduction reaction (ORR) correlated cathodic luminol ECL. The synergistic effects arising from the combination of Fe and Co in DACs were explored by ECL emission. Comparative studies with Fe-PNC SACs highlighted the superior catalytic performance of Fe-Co-PNC DACs. The ECL sensing platform exhibited excellent sensitivity, which provided a fast detection of Trolox with a wide linear range (0.1 µM-1.0 mM) and a low detection limit (LOD) of 0.03 µM. The platform demonstrated remarkable reproducibility and long-term stability, showcasing its potential for practical biosensing applications. SIGNIFICANCE: This study introduced the novel concept of Fe-Co-PNC DACs. The demonstrated synergistic effects and enhanced catalytic efficiency of DACs offer new avenues for the rational design of advanced catalysts. The successful application in the sensitive detection of Trolox emphasizes their potential significance in biosensing. It not only expands our understanding of SACs but also opens doors for the development of efficient and stable catalysts with broader applications.

16.
Food Chem ; 441: 138315, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38181667

RESUMO

Recently, nanozymes as an outstanding alternative to natural enzymes has attracted wide attention because of its high stability performance. In this study, PNC nonmetal nanozymes with high oxidase-like activity was synthesized can specifically catalyze colorless 3,3,5,5-tetramethyl-benzidine(TMB) to form blue oxidized TMB (TMBox). In the presence of nitrite, it further oxidizes TMBox to obtain yellow derivative products attributed to nitrite inducing diazotization reaction in TMBox. Based on this principle, a colorimetric and electrochemical sensing system was developed, and the ultra-sensitive multi-mode detection of nitrite was realized by combining RGB mode of smart phone, UV-Vis spectrum and electrochemical method. Compared with single signal detection, the multi-mode sensing system can realize self-validation to achieve more reliable detection results. What's more, the developed multi-mode sensing could quickly and sensitively detect nitrite in real sample, especially RGB mode of smart phone meeting the equipment limited areas, suggesting a broad application prospects in food safety.


Assuntos
Colorimetria , Nitritos , Catálise , Técnicas Eletroquímicas , Inocuidade dos Alimentos
17.
Anal Chim Acta ; 1264: 341288, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37230721

RESUMO

A novel molecularly imprinted electrochemical aptasensor (MIEAS) was constructed for selective progesterone (P4) detection based on SnO2-graphene (SnO2-Gr) nanomaterial and gold nanoparticles (AuNPs). SnO2-Gr with a large specific area and excellent conductivity improved the adsorption capacity of P4. Aptamer, as biocompatible monomer, was captured by AuNPs on modified electrode through Au-S bond. An electropolymerized molecularly imprinted polymer (MIP) film consisted of p-aminothiophenol as chemical functional monomer and P4 as template molecule. Due to the synergetic effect of MIP and aptamer towards P4, this MIEAS exhibited better selectivity than the sensor with MIP or aptamer as single recognition element. The prepared sensor had a low detection limit of 1.73 × 10-15 M in a wide linear range from 10-14 M to 10-5 M. Satisfactory recovery obtained in tap water and milk samples proved that this sensor had great potential in environmental and food analysis.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Polímeros/química , Ouro/química , Progesterona , Técnicas Eletroquímicas , Nanopartículas Metálicas/química , Polímeros Molecularmente Impressos , Limite de Detecção , Eletrodos
18.
ACS Appl Mater Interfaces ; 15(4): 5504-5511, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36662742

RESUMO

Halide solid electrolytes (SEs) stand out among the many different types of SEs owing to their high ionic conductivity and excellent oxidative stability. Aliovalent substitution is a common strategy to enhance the ionic conductivity of halide electrolytes, but this strategy significantly decreases their electrochemical stability. Herein, we report Hf-substituted Li3InCl6 (Li3-xIn1-xHfxCl6, 0 ≤ x ≤ 0.7) SEs, in which a low concentration (0.1 ≤ x ≤ 0.5) of Hf enhances the ionic conductivity without affecting the electrochemical stability. Among them, Li2.7In0.7Hf0.3Cl6 exhibits a high ionic conductivity of 1.28 mS cm-1 and a wide electrochemical stability window of 2.68-4.22 V. All-solid-state batteries fabricated using Li2.7In0.7Hf0.3Cl6 SE present high discharge capacity and good cycling stability at 25 °C. Furthermore, we summarize the methods of crystal structure regulation by which aliovalent substitution of halide SEs is achieved and discuss potential research directions in the design of novel halide SEs with high ionic conductivity and electrochemical stability.

19.
J Mech Behav Biomed Mater ; 138: 105610, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509014

RESUMO

Conductive hydrogels attract the attention of researchers worldwide, especially in the field of flexible sensors like strain and pressure. These flexible materials have potential applications in the field of electronic skin, soft robotics, energy storage, and human motion detection. However, its practical application is limited due to low stretchability, high hysteresis energy, low conductivity, long-range strain sensitivity, and high response time. It's still a challenging job to endow all these properties in a single hydrogel network. In the present work, cellulose nano crystals (CNCs) reinforced hydrophobically associated gels were developed using APS as a source of radical polymerization, acrylamide and lauryl methacrylate were used as a monomer. CNCs reinforced the hydrophobically associated hydrogels through hydrogen bonding to retain the hydrogel's network structure. Hydrogels consist of dual crosslinking, which demonstrate exceptional mechanical performance (fracture stress and strain, toughness, and Young's modulus). The low hysteresis energy (10.9 kJm-3) and high conductivity (22.97 mS/cm) make the hydrogels a strong candidate for strain sensors with high sensitivity (GF = 19.25 at 700% strain) and a fast response time of 200 ms. Cyclic performance was also investigated up to 300 continuous cycles. After 300 cycles, the hydrogels were still stable and no considerable change was observed. These hydrogels are capable of sensing different human motions like wrist, finger bending, and neck (up-down and straight and right/left motion of neck). The hydrogels also demonstrate changes in current in response to swallowing, different speaking words, and writing different alphabets. These results suggest that our prepared materials can sense different small and large human motions, and also could be used in any electronic device where strain sensing is required.


Assuntos
Celulose , Nanopartículas , Humanos , Polímeros , Hidrogéis , Movimento (Física) , Cinacalcete , Condutividade Elétrica
20.
J Colloid Interface Sci ; 650(Pt A): 636-647, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437443

RESUMO

Seawater electrolysis to produce hydrogen is a clean and sustainable strategy for the development of clean and sustainable energy storage systems. However, the erosion and destruction of electrocatalysts of the devices by Cl- in seawater during splitting process make it very difficult to realize. In this work, a partially selenized FeCo layered double hydroxide (Se-FeCo-LDH) catalyst is successfully synthesized, which shows good electrocatalytic performance in seawater during water splitting due to both its excellent conductivity and large surface area. Moreover, an anion aggregation layer around the electrode during the catalytic process can be formed to avoid electrode erosion and destruction by Cl- as well as the competitive reaction of chloride oxidation with the oxygen evolution reaction (OER), which not only improves the catalytic efficiency but also the durability of the catalyst. As a result, the overpotential is only 229 mV at a current density of 100 mA cm-2 for OER in 1 M KOH. Only 1.446 V and 1.491 V voltages are required to reach a current density of 10 mA cm-2 in overall alkaline water and seawater splitting, respectively. Besides, this Se-FeCo-LDH catalyst also achieves long-term stability up to 245 h in overall alkaline seawater splitting. The development of Se-FeCo-LDH catalyst should have an enlightening effect in the field of hydrogen production by (sea)water electrolysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa