Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(9): 3933-3941, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38666964

RESUMO

ß-Amyrin synthase (bAS) is a representative plant oxidosqualene cyclase (OSC), and previous studies have identified many functional residues and mutants that can alter its catalytic activity. However, the regulatory mechanism of the active site architecture for adjusting the catalytic activity remains unclear. In this study, we investigate the function of key residues and their regulatory effects on the catalytic activity of Glycyrrhiza glabra ß-amyrin synthase (GgbAS) through molecular dynamics simulations and site-directed mutagenesis experiments. We identified the plasticity residues located in two active site regions and explored the interactions between these residues and tetracyclic/pentacyclic intermediates. Based on computational and experimental results, we further categorize these plasticity residues into three types: effector, adjuster, and supporter residues, according to their functions in the catalytic process. This study provides valuable insights into the catalytic mechanism and active site plasticity of GgbAS, offering important references for the rational enzyme engineering of other OSC enzyme.


Assuntos
Biocatálise , Domínio Catalítico , Transferases Intramoleculares , Simulação de Dinâmica Molecular , Transferases Intramoleculares/metabolismo , Transferases Intramoleculares/química , Transferases Intramoleculares/genética , Mutagênese Sítio-Dirigida
2.
Curr Med Imaging ; 19(2): 149-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35352651

RESUMO

BACKGROUND: Ultrasound is one of the preferred choices for early screening of dense breast cancer. Clinically, doctors have to manually write the screening report, which is time-consuming and laborious, and it is easy to miss and miswrite. AIM: We proposed a new pipeline to automatically generate AI breast ultrasound screening reports based on ultrasound images, aiming to assist doctors in improving the efficiency of clinical screening and reducing repetitive report writing. METHODS: AI efficiently generated personalized breast ultrasound screening preliminary reports, especially for benign and normal cases, which account for the majority. Doctors then make simple adjustments or corrections based on the preliminary AI report to generate the final report quickly. The approach has been trained and tested using a database of 4809 breast tumor instances. RESULTS: Experimental results indicate that this pipeline improves doctors' work efficiency by up to 90%, greatly reducing repetitive work. CONCLUSION: Personalized report generation is more widely recognized by doctors in clinical practice than non-intelligent reports based on fixed templates or options to fill in the blanks.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Ultrassonografia Mamária/métodos , Ultrassonografia , Inteligência Artificial
3.
Front Neurosci ; 16: 894454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958994

RESUMO

Background: Recently, the neurite outgrowth inhibitor-B (Nogo-B) receptor has been reported as a novel candidate gene for Parkinson's disease (PD). Nogo-B receptors need to combine with soluble Nogo-B to exert their physiological function. However, little is known about the relationship between serum soluble Nogo-B and PD. Methods: Serum levels of sNogo-B and α-Synuclein (α-Syn) were measured in a cohort of 53 patients with PD and 49 healthy controls with the ELISA kit method. Results: Serum sNogo-B level is significantly lower in the PD group than that in healthy controls and is negatively correlated with UPDRS-III score (p = 0.049), H&Y stage (p = 0.0108) as well as serum α-Syn level (p = 0.0001). The area under the curve (AUC) of serum sNogo-B in differentiating patients with PD from controls was 0.801 while the AUC of serum α-Syn was 0.93. Combining serum sNogo-B and α-Syn in differentiating patients with PD from HC presented higher discriminatory potential (AUC = 0.9534). Conclusion: Decreased serum sNogo-B may be a potential biomarker for PD. Lower Nogo-B level reflects worse motor function and disease progression of PD. Serum sNogo-B is of added value to serum α-Syn panel in distinguishing PD from controls. Future studies are needed to confirm in larger samples and different populations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa