Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(9): e1906250, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32406190

RESUMO

Heterogeneous hydrogenation reactions are of great importance for chemical upgrading and synthesis, but still face the challenges of controlling selectivity and long-term stability. To improve the catalytic performance, many hydrogenation reactions utilize special yolk/core-shell nanoreactors (YCSNs) with unique architectures and advantageous properties. This work presents the developmental and technological challenges in the preparation of YCSNs that are potentially useful for hydrogenation reactions, and provides a summary of the properties of these materials. The work also addresses the scientific challenges in applications of these YCSNs in various gas and liquid-phase hydrogenation reactions. The catalyst structures, catalytic performance, structure-performance relationships, reaction mechanisms, and unsolved problems are discussed too. Also, a brief outlook and opportunities for future research in this field are presented. This work on the advancements in YCSNs might inspire the creation of new materials with desired structures for achieving maximal hydrogenation performances.


Assuntos
Nanotecnologia , Catálise , Hidrogenação
2.
J Environ Sci (China) ; 92: 106-117, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430113

RESUMO

Direct synthesis of dimethyl ether (DME) by CO2 hydrogenation has been investigated over three hybrid catalysts prepared by different methods: co-precipitation, sol-gel, and solid grinding to produce mixed Cu, ZnO, ZrO2 catalysts that were physically mixed with a commercial ferrierite (FER) zeolite. The catalysts were characterized by N2 physisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption of CO2 (CO2-TPD), temperature programmed desorption of NH3 (NH3-TPD), and temperature programmed H2 reduction (H2-TPR). The results demonstrate that smaller CuO and Cu crystallite sizes resulting in better dispersion of the active phases, higher surface area, and lower reduction temperature are all favorable for catalytic activity. The reaction mechanism has been studied using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Methanol appears to be formed via the bidentate-formate (b-HCOO) species undergoing stepwise hydrogenation, while DME formation occurs from methanol dehydration and reaction of two surface methoxy groups.


Assuntos
Dióxido de Carbono , Catálise , Hidrogenação , Éteres Metílicos , Oxirredução
3.
Angew Chem Int Ed Engl ; 59(42): 18374-18379, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32588534

RESUMO

Nanoreactors with hollow structures have attracted great interest in catalysis research due to their void-confinement effects. However, the challenge in unambiguously unraveling these confinement effects is to decouple them from other factors affecting catalysis. Here, we synthesize a pair of hollow carbon sphere (HCS) nanoreactors with presynthesized PdCu nanoparticles encapsulated inside of HCS (PdCu@HCS) and supported outside of HCS (PdCu/HCS), respectively, while keeping other structural features the same. Based on the two comparative nanoreactors, void-confinement effects in liquid-phase hydrogenation are investigated in a two-chamber reactor. It is found that hydrogenations over PdCu@HCS are shape-selective catalysis, can be accelerated (accumulation of reactants), decelerated (mass transfer limitation), and even inhibited (molecular-sieving effect); conversion of the intermediate in the void space can be further promoted. Using this principle, a specific imine is selectively produced. This work provides a proof of concept for fundamental catalytic action of the hollow nanoreactors.

4.
Chem Asian J ; 16(6): 678-689, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453068

RESUMO

CO2 is the main component of greenhouse gases and also an important carbon source. The hydrogenation of CO2 to methane using Ni-based catalysts can not only alleviate CO2 emissions but also obtain useful fuels. However, Ni-based catalysts face one major problem of the sintering of Ni nanoparticles in the process of CO2 methanation. Thus, this work has synthesized a series of efficient and robust nickel silicate catalysts (NiPS-X) with different nickel content derived from nickel phyllosilicate by the hydrothermal method. It was found that the Ni loading plays a critical role in the structure and catalytic performance of the NiPS-X catalysts. The catalytic performance gradually increases with the increase of Ni loading. In particular, the highly dispersed NiPS-1.6 catalyst with a high Ni loading of 34.3 wt% could obtain the CO2 conversion greater than 80%, and the methane selectivity was close to 100% for 48 h at 330 °C and the GHSV of 40,000 mL g-1 h-1 . The excellent catalytic property can be assigned to the high dispersion of Ni nanoparticles and the strong interaction between the active component and the carrier, which is derived from a unique layered silicate structure with lots of nickel phyllosilicate and a large number of Lewis acid sites.

5.
Small Methods ; 5(5): e2001250, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34928103

RESUMO

It is desirable for a sustainable society that the production and utilization of renewable materials are net-zero in terms of carbon emissions. Carbon materials with emerging applications in CO2 utilization, renewable energy storage and conversion, and biomedicine have attracted much attention both academically and industrially. However, the preparation process of some new carbon materials suffers from energy consumption and environmental pollution issues. Therefore, the development of low-cost, scalable, industrially and economically attractive, sustainable carbon material preparation methods are required. In this regard, the use of biomass and its derivatives as a precursor of carbon materials is a major feature of sustainability. Recent advances in the synthetic strategy of sustainable carbon materials and their emerging applications are summarized in this short review. Emphasis is made on the discussion of the original intentions and various sustainable strategies for producing sustainable carbon materials. This review provides basic insights and significant guidelines for the further design of sustainable carbon materials and their emerging applications in catalysis and the biomedical field.

6.
Nat Commun ; 10(1): 5698, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836709

RESUMO

Recently, carbon dioxide capture and conversion, along with hydrogen from renewable resources, provide an alternative approach to synthesis of useful fuels and chemicals. People are increasingly interested in developing innovative carbon dioxide hydrogenation catalysts, and the pace of progress in this area is accelerating. Accordingly, this perspective presents current state of the art and outlook in synthesis of light olefins, dimethyl ether, liquid fuels, and alcohols through two leading hydrogenation mechanisms: methanol reaction and Fischer-Tropsch based carbon dioxide hydrogenation. The future research directions for developing new heterogeneous catalysts with transformational technologies, including 3D printing and artificial intelligence, are provided.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa