Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 35(6): 2120-8, 2014 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-25158486

RESUMO

Based on light transmission method in quantification of liquid saturation and its application in two-phase flow system, two groups of sandbox experiments were set up to study the migration of gas or Dense Non-Aqueous Phase Liquids (DNAPLs) in water saturated porous media. The migration of gas or DNAPL was monitored in the study. Two modified Light Intensity-Saturation (LIS) models for water/gas two-phase system were applied and verified by the experiment data. Moreover two new LIS models for NAPL/water system were developed and applied to simulate the DNAPL infiltration experiment data. The gas injection experiment showed that gas moved upward to the top of the sandbox in the form of 'fingering' and finally formed continuous distribution. The results of DNAPL infiltration experiment showed that TCE mainly moved downward as the result of its gravity, eventually formed irregular plume and accumulated at the bottom of the sandbox. The outcomes of two LIS models for water/gas system (WG-A and WG-B) were consistent to the measured data. The results of two LIS models for NAPL/water system (NW-A and NW-B) fit well with the observations, and Model NW-A based on assumption of individual drainage gave better results. It could be a useful reference for quantification of NAPL/water saturation in porous media system.


Assuntos
Modelos Teóricos , Água/química , Fenômenos Químicos , Permeabilidade , Porosidade
2.
Exp Ther Med ; 5(5): 1444-1450, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23737896

RESUMO

The aim of this study was to assess the clinical efficacy and safety of mechanically assisted thrombolysis in the treatment of acute cerebral infarction. Mechanically assisted intra-arterial urokinase thrombolysis was conducted on 28 patients with acute cerebral infarction with a disease onset time of 90-450 min. The maximum level of urokinase was 1,150,000 units. Thrombus disruption with a microwire, retrieval with a microcatheter and stent-assisted revascularization were performed. The recanalization rate, bleeding complications and modified Rankin scale (mRS) score were observed within 3 months of surgery. Our results showed that mechanically assisted thrombolysis was successfully conducted on 23 patients, with a recanalization rate of 82.1% (23/28), average recanalization time of 65.22 min and mRS score ≤3.5. Five cases of recanalization were invalid, including 2 cases of mortality, 1 case with an mRS score of 4 and 2 cases with an mRS score ≤3. In the recanalization group, the mechanically assisted thrombolysis did not increase the number of bleeding complications. Our study demonstrated that the safety of mechanically assisted thrombolysis for the treatment of acute cerebral infarction is equivalent to that of simple intra-arterial thrombolysis, but that the former has a higher efficiency. Mechanically assisted thrombolysis is able to reduce the urokinase dosage and recanalization time, and increase the recanalization rate.

3.
Huan Jing Ke Xue ; 32(5): 1364-71, 2011 May.
Artigo em Chinês | MEDLINE | ID: mdl-21780592

RESUMO

This paper studied on the influence of bioclogging on permeability of saturated porous media. Laboratory hydraulic tests were conducted in a two-dimensional C190 sand-filled cell (55 cm wide x 45 cm high x 1.28 cm thick) to investigate growth of the mixed microorganisms (KB-1) and influence of biofilm on permeability of saturated porous media under condition of rich nutrition. Biomass distributions in the water and on the sand in the cell were measured by protein analysis. The biofilm distribution on the sand was observed by confocal laser scanning microscopy. Permeability was measured by hydraulic tests. The biomass levels measured in water and on the sand increased with time, and were highest at the bottom of the cell. The biofilm on the sand at the bottom of the cell was thicker. The results of the hydraulic tests demonstrated that the permeability due to biofilm growth was estimated to be average 12% of the initial value. To investigate the spatial distribution of permeability in the two dimensional cell, three models (Taylor, Seki, and Clement) were used to calculate permeability of porous media with biofilm growth. The results of Taylor's model showed reduction in permeability of 2-5 orders magnitude. The Clement's model predicted 3%-98% of the initial value. Seki's model could not be applied in this study. Conclusively, biofilm growth could obviously decrease the permeability of two dimensional saturated porous media, however, the reduction was much less than that estimated in one dimensional condition. Additionally, under condition of two dimensional saturated porous media with rich nutrition, Seki's model could not be applied, Taylor's model predicted bigger reductions, and the results of Clement's model were closest to the result of hydraulic test.


Assuntos
Incrustação Biológica , Membranas Artificiais , Modelos Teóricos , Microbiologia da Água , Poluentes da Água/isolamento & purificação , Purificação da Água/métodos , Biofilmes , Água Subterrânea/análise , Permeabilidade , Porosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa