Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Phys Chem Chem Phys ; 26(15): 11738-11745, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563831

RESUMO

High-performance sodium-ion batteries (SIBs) require anode materials with high capacity and fast kinetics. Based on first-principles calculations, we propose BC3N2 and BC3N2/graphene (B/G) heterostructure as potential SIB anode materials. The BC3N2 monolayer exhibits intrinsic metallic behavior. In addition, BC3N2 possesses a low Na+ diffusion barrier (0.15 eV), a high storage capacity (777 mA h g-1), a low open-circuit voltage (0.72 V), and a tiny axial expansion (0.36%). Compared with the BC3N2 monolayer, the B/G heterostructure exhibits a lower diffusion barrier of 0.027 eV, suggesting a much faster diffusion. More importantly, although the B/G heterostructure possesses heavier molar weight, its theoretical capacity (689 mA h g-1) is comparable to that of the BC3N2 monolayer. Based on the above-mentioned properties, we hope both the BC3N2 monolayer and the B/G heterostructure would be promising anodes for SIBs.

2.
Phys Chem Chem Phys ; 26(5): 4589-4596, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38250962

RESUMO

Multivalent-ion batteries have garnered significant attention due to their high energy density, low cost, and superior safety. Calcium-ion batteries (CIBs) are regarded as the next-generation energy storage systems for their abundant natural resources and bivalent characteristics. However, the absence of high-performance anode materials poses a significant obstacle to the progress of battery technology. Two-dimensional (2D) Dirac materials have excellent conductivity and abundant active sites, rendering them promising candidates as anode materials. A novel 2D Dirac material known as "graphene+" has been theoretically reported, exhibiting prominent properties including good stability, exceptional ductility, and remarkable electronic conductivity. By using first-principles calculations, we systematically investigate the performance of graphene+ as an anode material for CIBs. Graphene+ exhibits an ultra-high theoretical capacity (1487.7 mA h g-1), a small diffusion barrier (0.21 eV), and a low average open-circuit voltage (0.51 V). Furthermore, we investigate the impact of the electrolyte solvation on the performance of Ca-ion adsorption and migration. Upon contact with electrolyte solvents, graphene+ exhibits strong adsorption strength and rapid migration of Ca-ions on its surface. These results demonstrate the promising potential of graphene+ as a high-performance anode material for CIBs.

3.
Phys Chem Chem Phys ; 26(17): 13395-13404, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647031

RESUMO

Carbonaceous materials are promising candidates as anode materials for non-lithium-ion batteries (NLIBs) due to their appealing properties such as good electrical conductivity, low cost, and high safety. However, graphene, a classic two-dimensional (2D) carbon material, is chemically inert to most metal atoms, hindering its application as an electrode material for metal-ion batteries. Inspired by the unique geometry of a four-penta unit, we explore a metallic 2D carbon allotrope C5-10-16 composed of 5-10-16 carbon rings. The C5-10-16 monolayer is free from any imaginary frequencies in the whole Brillouin zone. Due to the introduction of a non-sp2 hybridization state into C5-10-16, the extended conjugation of π-electrons is disrupted, leading to the enhanced surface activity toward metal ions. We investigate the performance of C5-10-16 as the anode for sodium/potassium-ion batteries by using first-principles calculations. The C5-10-16 sheet has high theoretical specific capacities of Na (850.84 mA h g-1) and K (743.87 mA h g-1). Besides, C5-10-16 exhibits a moderate migration barrier of 0.63 (0.32) eV for Na (K), ensuring rapid charging/discharging processes. The average open-circuit voltages of Na and K are 0.33 and 0.62 V, respectively, which are within the voltage acceptance range of anode materials. The fully sodiated (potassiated) C5-10-16 shows tiny lattice expansions of 1.4% (1.3%), suggesting the good reversibility. Moreover, bilayer C5-10-16 significantly affects both the adsorption strength and the mobility of Na or K. All these results show that C5-10-16 could be used as a promising anode material for NLIBs.

4.
Phys Chem Chem Phys ; 25(8): 6519-6526, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36786369

RESUMO

High specific capacity and fast charge/discharge rate are important indicators for the development of next-generation ion batteries. Compared with conventional monovalent ion batteries like lithium-ion batteries and sodium-ion batteries, multivalent ion batteries have attracted extensive attention owing to their high energy densities. Here, we systematically explore the interactions between Mg atoms and α-beryllene monolayers by means of density functional theory calculations. Mg atoms can be adsorbed stably on α-beryllene monolayers with the adsorption energy of -0.24 eV. The low diffusion energy barriers (0.099/0.101 eV) indicate the rapid mobility of Mg during the charge/discharge process. Moreover, the α-beryllene monolayer exhibits an ultra-high theoretical specific capacity of 5956 mA h g-1 for Mg, a low average open-circuit voltage of 0.24 V, and a tiny volume change of -1.08%. Finally, the constructed h-BN/α-beryllene heterostructure shows that h-BN can serve as a protective cover to preserve pristine α-beryllene in respect of metallicity, Mg adsorption capability, and fast ionic mobility. The above mentioned outstanding results make α-beryllene a promising anode material for magnesium-ion batteries.

5.
Phys Chem Chem Phys ; 25(22): 15295-15301, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222137

RESUMO

Two-dimensional (2D) carbon materials integrated with planar tetracoordinate carbon (ptC) and negative Poisson's ratio (NPR) provide a cornerstone for constructing multifunctional energy-storage devices. As a typical 2D carbon material, the pristine graphene is chemically inert, hindering its application in metal-ion batteries. Introducing the ptC in graphene can break the extended conjugation of π-electrons and lead to an enhanced surface reactivity. Inspired by the unique geometry of [4.6.4.6] fenestrane skeleton with ptC, we theoretically design a ptC-containing 2D carbon allotrope, namely THFS-carbon. It is intrinsically metallic with excellent dynamical, thermal, and mechanical stabilities. The Young's modulus along the x direction (311.37 N m-1) is comparable to that of graphene. Intriguingly, THFS-carbon possesses an in-plane half-NPR distinct from most other 2D crystals. As a promising anode for sodium-ion batteries, THFS-carbon delivers an ultra-high theoretical storage capacity (2233 mA h g-1), a low diffusion energy barrier (0.03-0.05 eV), a low open-circuit voltage (0.14-0.40 V), and a good reversibility for Na insertion/extraction.

6.
Phys Chem Chem Phys ; 25(16): 11513-11521, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039312

RESUMO

Na-ion batteries (NIBs) have attracted a great deal of attention for large-scale electric energy storage due to their inherent safety, natural abundant resources, and low cost. The exploration of suitable anode materials is the major challenge in advancing NIB technology. On the basis of first-principles calculations, we systematically explore the potential performance of two-dimensional (2D) TiCl2 as an electrode material for NIBs. Monolayer TiCl2 can be easily exfoliated from the bulk structure with a small exfoliation energy of 0.64 J m-2. It shows good stability, as demonstrated by its high cohesive energy, positive phonon modes, and high thermal stability. Monolayer TiCl2 has high storage capacity (451.3 mA h g-1), low diffusion energy barrier (0.02-0.14 eV), moderate average open-circuit voltage (0.81 V), and small lattice change (2.37%). Moreover, bilayer TiCl2 can significantly enhance the Na adsorption strength but reduce the Na-ion diffusion ability. These results suggest that TiCl2 is a promising anode candidate for NIBs.

7.
Phys Chem Chem Phys ; 25(42): 29224-29232, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873573

RESUMO

Lithium-ion batteries (LIBs) remain irreplaceable for clean energy storage applications. The intrinsic metallic nature of penta-SiCN ensures its promising application in the electrodes of LIBs. Using first-principles calculations, we evaluate the performance of the intrinsic metallic penta-SiCN monolayer as the anode material for LIBs. Penta-SiCN exhibits a low diffusion energy barrier (0.107 eV) for Li atom migration on Si18C18N18, while the diffusion energy barrier for vacancy migration on Li17Si18C18N18 is only 0.006 eV. Additionally, penta-SiCN possesses a high theoretical capacity of 1485.98 mA h g-1, average open-circuit voltage of 0.97 V, and small volume expansion of 1%. Remarkably, penta-SiCN exhibits robust wettability towards the electrolytes (solvent molecules and metal salts) widely used in commercial LIBs, indicating the excellent compatibility in electrode applications. These intriguing theoretical findings make penta-SiCN a high performance anode material for LIBs.

8.
Phys Chem Chem Phys ; 25(42): 28814-28823, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850539

RESUMO

Sodium-ion batteries (SIBs) have attracted much attention due to their abundant earth-reserves and low cost. Two-dimensional (2D) Dirac materials show great application prospects as anodes for SIBs because of their excellent electronic conductivity. We explore the performances of AlB4 (Al2B2) monolayers and bilayers as anodes for SIBs by using first-principles calculations. The AlB4 (Al2B2) monolayer exhibits a high theoretical storage capacity of 954.15 (709.17) mA h g-1 and a low diffusion barrier of 0.36 (0.03) eV. The calculated average open-circuit voltage (0.68/0.18 V) falls within the acceptance range of 0.1-1.0 V for anode materials. The fully sodiated AlB4 (Al2B2) monolayer shows a tiny lattice expansion of 0.9% (2.4%), suggesting good reversibility. Furthermore, in comparison with the AlB4 (Al2B2) monolayer, the AlB4 (Al2B2) bilayer can provide stronger binding with Na on the outside surface. These results contribute to a better understanding of the AlB4 (Al2B2) monolayers and bilayers as potential high-performance anode materials for SIBs.

9.
Phys Chem Chem Phys ; 23(7): 4386-4393, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33594394

RESUMO

Searching for high-performance electrode materials is an important topic in rechargeable batteries. Using first-principles calculations, we systematically explore the potential application of a two-dimensional BP2 monolayer as a cathode material for Li-ion and Na-ion batteries. The pristine BP2 monolayer exhibits metallic characteristics, which facilitate the transportation of electrons. The Li and Na atoms bind strongly to the BP2 monolayer, indicating a good structural stability. Furthermore, the geometrical structure of BP2 is well maintained during the adsorption process. The Li and Na ions prefer to move along the zigzag direction with relatively low energy barriers. Especially, the ultralow Na diffusion barrier (0.03 eV) implies that monolayer BP2 has an excellent charge/discharge capability. The specific capacity and average electrode potential of Li (Na) are 619.45 (279.93) mA h g-1 and 2.89 (2.49) V, respectively. These results reveal that the BP2 monolayer is an appealing cathode material for alkali-metal batteries.

10.
Phys Chem Chem Phys ; 23(21): 12371-12375, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34027526

RESUMO

Sodium-ion batteries (SIBs) have been attracting great attention as the most promising alternative to lithium-ion batteries (LIBs) for large-scale energy storage. However, the absence of suitable anode materials is the main bottleneck for the commercial application of SIBs. Herein, the adsorption and diffusion behaviors of Na on graphether are predicted by first-principles density functional calculations. Our results show that Na atoms can be adsorbed on graphether forming a uniform and stable coverage on both sides. Even at low intercalated Na concentrations, the semiconducting graphether can be changed to a metallic state, ensuring good electrical conductivity. Due to the structural anisotropy of graphether, the Na+ ions show a remarkable one-dimensional diffusion with an ultralow energy barrier of 0.04 eV, suggesting ultrafast charge/discharge characteristics. The graphether monolayer has a high theoretical specific capacity of 670 mA h g-1, which is much higher than commercial graphite anode materials. Furthermore, the average voltage is 1.58 V, comparable with that of commercial TiO2 anode materials for LIBs (1.5 V). During the charge/discharge process, graphether could mostly preserve the structural integrity upon the adsorption of Na even at the maximum concentration, suggesting its good reversibility. All these results show that graphether is a promising anode material for high-performance SIBs.

11.
Jpn J Clin Oncol ; 51(4): 560-568, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33438732

RESUMO

OBJECTIVE: Gastric mucosa-associated lymphoid tissue lymphoma is a rare disease, which is associated with a low endoscopic diagnostic accuracy even on tissue biopsy. We aimed to establish a diagnostic process system (M-system) using detailed magnifying endoscopy images to improve the diagnostic efficiency of this disease. METHODS: First, 34 cases from 16 patients with the diagnosis of mucosa-associated lymphoid tissue lymphoma were collected as the study group. The control group included randomly selected patients who were diagnosed with early differentiated carcinoma, undifferentiated carcinoma or inflammation. Then, the endoscopic images of these patients were analyzed by senior physicians. Finally, the M-system was established based on the data extracted from the images reviewed, and its diagnostic efficiency for mucosa-associated lymphoid tissue lymphoma was validated by the junior physicians. RESULTS: A series of elements with high sensitivity and specificity for the diagnosis of mucosa-associated lymphoid tissue lymphoma on endoscopic images were extracted for the establishment of the M-system. Using the M-system, the diagnostic accuracy, sensitivity, specificity and correct indices of mucosa-associated lymphoid tissue lymphoma rose from 65.4 to 79.4%, 41.2 to 76.5%, 73.5 to 80.4% and 0.147 to 0.569%, respectively, all of which were statistically significant. CONCLUSIONS: The M-system can improve the diagnostic accuracy of mucosa-associated lymphoid tissue lymphoma of the superficial-spreading type on detailed magnifying endoscopy. This would help in the early diagnosis of the disease and treatment, which would translate into improved clinical outcomes.


Assuntos
Endoscopia , Linfoma de Zona Marginal Tipo Células B/diagnóstico , Linfoma de Zona Marginal Tipo Células B/patologia , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Mucosa Gástrica/diagnóstico por imagem , Mucosa Gástrica/patologia , Humanos , Linfoma de Zona Marginal Tipo Células B/diagnóstico por imagem , Linfoma não Hodgkin/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Neoplasias Gástricas/diagnóstico por imagem
12.
Phys Chem Chem Phys ; 22(30): 17213-17220, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32677646

RESUMO

Two-dimensional (2D) ultra-wide bandgap (UWBG) semiconductors have attracted tremendous attention because of their unique electronic properties and promising applications. Using first-principles calculations, monolayer (bilayer) CaFCl has a cleavage energy of 0.93 J m-2 (0.72 J m-2), suggesting that the exfoliation of monolayer and few-layer materials from the bulk phase could be feasible. The CaFCl monolayer is an UWBG semiconductor with a direct bandgap of 6.62 eV. In addition to the dynamic and thermodynamic stability, it can remain thermally stable at 2200 K, suitable for operation in high-temperature environments. The bandgap of monolayer CaFCl can be tuned by external strain and layer thickness. The decrease of the layer thickness leads to not only a bandgap increase but also an indirect-to-direct bandgap transition, suggesting a strong interlayer quantum confinement effect. Under biaxial strain, the direct bandgap can also be turned into an indirect one. The adsorption of a tetrathiafulvalene (TTF) molecule introduces deep donor states in the gap of CaFCl. Under an external electric field with direction from CaFCl to TTF, the TTF-derived donor states move closer to the conduction band edge of CaFCl and then the adsorption complex becomes effectively n-doped. Furthermore, monolayer CaFCl exhibits pronounced optical absorption in the ultraviolet range of the solar spectrum. These results render CaFCl an attractive 2D material for applications in flexible nanoelectronic and optoelectronic devices.

13.
J Cell Physiol ; 234(8): 13582-13591, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30633341

RESUMO

Serine-arginine protein kinase 1 (SRPK1) is the main regulator in alternative splicing by phosphorylating splicing factors rich in serine/arginine repeats. Its overexpression has been found in multiple cancer types and contributes to cancer development. Here we report the role of SRPK1 and underlying mechanism in gastric cancer (GC) cell growth. We found that SRPK1 was frequently upregulated in GC samples compared with their adjacent corresponding normal tissues by immunohistochemistry and western blot analysis. Knockdown of SRPK1 in GC cells suppressed cell growth in cell viability assays, colony formation assays and nude mice xenograft model, whereas overexpression of SRPK1 promotes opposite phenotypes in these assays. By a complementary DNA microarray analysis, we found that SRPK1 knockdown had significant inhibitory effects on a majority of small nucleolar RNAs expression. Among them, snoRA42, snoRA74A, and snoRD10 were selected for further functional experiments. Cell growth curves on a plate and in soft agar indicated that the three snoRNAs play potential oncogenic function in GC. In addition, SRPK1 could co-immunoprecipitated with NCL, a nucleolar phosphoprotein involved in the synthesis and maturation of ribosomes. These results suggested that SRPK1 contributes to GC development by a new possible mechanism involving snoRNAs mediated signaling.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Nucleolar Pequeno/biossíntese , Neoplasias Gástricas/patologia , Animais , Proliferação de Células/fisiologia , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Neoplasias Gástricas/metabolismo
14.
Future Oncol ; 13(24): 2159-2169, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28984479

RESUMO

AIM: To explore the patterns of gene expression and functionally characterize the differentially expressed genes (DEGs) in thyroid cancer. METHODS: DEGs were determined between 57 paired thyroid cancer and noncancerous tissues using DESeq2. Subsequently, the main functions of the DEGs were studied by a variety of analyses. RESULTS: We identified a cohort of 752 upregulated and 309 downregulated DEGs in thyroid cancer. Several hub DEGs were found in the protein-protein interaction networks. We also revealed a set of DEGs that were dysmethylated, involved in copy number variations and associated with clinical features in thyroid cancer. CONCLUSION: These results provide some novel findings on DEGs in thyroid cancer, which will be useful to guide further investigation and target therapy for this disease. [Formula: see text].


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Glândula Tireoide/genética , Estudos de Casos e Controles , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Metilação de DNA , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/patologia , Transcriptoma
15.
Med Sci Monit ; 23: 151-157, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28074045

RESUMO

BACKGROUND SDF-1 and NF-κB are associated with the prognosis of a wide range of cancers, but their value in cervical cancer remains controversial. The aim of this study was to investigate the expression of SDF-1and NF-κB in cervical cancer and their significance in clinical prognosis. MATERIAL AND METHODS The expression of SDF-1and NF-κB in 105 formalin-fixed, paraffin-embedded cervical cancer tissues and the adjacent tissues was examined by immunohistochemistry (IHC). The results were semi-quantitatively scored and analyzed by chi-square test. The overall survival times (OS) were collected by follow-up and analyzed by Kaplan-Meier analysis. RESULTS The expression level of both SDF-1and NF-κB in cervical cancer are higher than that in the adjacent tissues (P<0.05). SDF-1 expression are correlated with tumor size and FIGO histology grade (P<0.05). NF-κB expression are correlated with tumor size and FIGO histology grade, and lymph node metastasis (LNM) status (P<0.05). The patients with a positive expression of SDF-1or NF-κB tended to have much shorter survival time than patients with negative expression. In addition, multivariate Cox regression analysis demonstrated that SDF-1 expression and lymph node metastasis are independent predictors of the OS in cervical cancer patients. CONCLUSIONS The expression of SDF-1 is significantly associated with tumor size and FIGO histology grade. The expression of NF-κB is significantly associated with tumor size, FIGO histology grade, and lymph node metastasis. The positive SDF-1or NF-κB expression is significantly correlated with poor prognosis. These may be valuable biomarkers for the prognosis and the potential therapeutic targets of cervical cancer.


Assuntos
Quimiocina CXCL12/metabolismo , NF-kappa B/metabolismo , Neoplasias do Colo do Útero/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Prognóstico , Neoplasias do Colo do Útero/patologia
16.
IUBMB Life ; 68(4): 320-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26949059

RESUMO

Long chain acyl CoA synthetase 4 (ACSL4) is a key enzyme in fatty acid metabolism with marked preference for arachidonic acid (AA). Recent reports have implicated its crucial roles in tumorigenesis. However in gastric cancer (GC), the expression and function of ACSL4 remain unclear. In the present study, we identified ACSL4 as a potential tumor suppressor in GC. The ACSL4 expression in GC samples was evaluated by real-time PCR and immunohistochemistry. The results indicated that the mRNA and protein levels of ACSL4 were frequently downregulated in cancer tissues compared with the adjacent non-cancerous mucosa control tissues. Cell-based functional assays exhibited that ectopic expression of ACSL4 inhibits cell growth, colony formation and cell migration, whereas ACSL4 knockdown enhanced these effects. In a nude mice model, ACSL4 knockdown also promoted subcutaneous xenografts' growth in vivo. Moreover, western blot analysis revealed that ACSL4 expression had a significant effect on FAK and P21 protein level. These findings suggest that ACSL4 plays a tumor-suppressive role and could be a potential therapeutic target in GC.


Assuntos
Coenzima A Ligases/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Movimento Celular , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Quinase 1 de Adesão Focal/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
17.
Med Sci Monit ; 22: 4475-4481, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27866212

RESUMO

BACKGROUND IL-1α and IL-6 are associated with the prognosis of a wide range of cancers, but their value in cervical cancer remains controversial. The aim of this study was to investigate the expression of IL-1α and IL-6 in cervical cancer and their significance in clinical prognosis. MATERIAL AND METHODS The expression of IL-1α and IL-6 in 105 formalin-fixed, paraffin-embedded cervical cancer tissues and adjacent non-tumor tissues was examined by immunohistochemistry. The results were semi-quantitatively scored and analyzed by chi-square test. Patient overall survival (OS) data was collected by follow-up and analyzed by Kaplan-Meier analysis. RESULTS The expression level of both IL-1α and IL-6 in cervical cancer tissue was higher than in adjacent non-tumor tissues (p<0.05). IL-1α expression was shown to be correlated with tumor size, FIGO histology grade, lymph node metastasis, stromal invasion, and tumor differentiation (p<0.05). IL-6 expression was shown to be correlated with tumor size, FIGO histology grade, and tumor differentiation (p<0.05). Patients with positive expression of IL-1α or IL-6 tended to have much shorter survival times than patients with negative expression. In addition, a multivariate Cox regression analysis demonstrated that IL-1α expression and lymph node metastasis were independent predictors of OS in cervical cancer patients. CONCLUSIONS The expression of IL-1α was significantly associated with tumor size, FIGO histology grade, lymph node metastasis, stromal invasion, and tumor differentiation. The expression of IL-6 was significantly associated with tumor size, FIGO histology grade, and tumor differentiation. Positive IL-1α and IL-6 expression was significantly correlated with poor prognosis. They may be considered valuable biomarkers for prognosis and potential therapeutic targets for cervical cancer.


Assuntos
Biomarcadores Tumorais/biossíntese , Interleucina-1alfa/biossíntese , Interleucina-6/biossíntese , Neoplasias do Colo do Útero/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/genética , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Interleucina-1alfa/genética , Interleucina-6/genética , Estimativa de Kaplan-Meier , Metástase Linfática , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
18.
J Chem Phys ; 141(19): 194306, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25416890

RESUMO

The synthesis of quasiplanar boron clusters (B36) with a central hexagonal hole provides the first experimental evidence that a single-atomic-layer borophene with hexagonal vacancies is potentially viable [Z. Piazza, H. Hu, W. Li, Y. Zhao, J. Li, and L. S. Wang, Nat. Commun. 5, 3113 (2014)]. However, owing to the hexagonal holes, tunning the electronic and physical properties of B36 through chemical modifications is not fully understood. Based on (van der Waals corrected-) density functional theory, we show that Li adsorbed on B36 and B36 (-) clusters can serve as reversible hydrogen storage media. The present results indicate that the curvature and ionization of substrates can enhance the bond strength of Li due to the energetically favorable B 2p-Li 2p orbitals hybridization. Both the polarization mechanism and the orbital hybridization between H-s orbitals and Li-2s2p orbitals contribute to the adsorption of H2 molecules and the resulting adsorption energy lies between the physisorbed and chemisorbed states. Interestingly, the number of H2 in the hydrogen storage medium can be measured by the appearance of the negative differential resistance behavior at different bias voltage regions. Furthermore, the cluster-assembled hydrogen storage materials constructed by metalized B36 clusters do not cause a decrease in the number of adsorbed hydrogen molecules per Li. The system reported here is favorable for the reversible hydrogen adsorption/desorption at ambient conditions.

19.
J Chem Phys ; 141(5): 054301, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25106581

RESUMO

Although TiO2/Au nanosystems exhibit high photocatalytic activities under solar radiation in the experiment, the quantum-size effect of TiO2 on the growth, electronic properties, and reactivity of Au clusters remains elusive. Using (time dependent) density functional theory, it is found that Au atoms attach to low-coordinated Ti and O atoms and serve as seeds for the growth of Au clusters, and the electronic (optical) properties of hybrid Au-TiO2 nano-clusters depend strongly upon the type of supported Au clusters. Interestingly, decorating TiO2 nano-particles with even-numbered Au clusters (Au8 or Au10) can enhance the photocatalytic activity by: (i) spatially separating electron and hole states and (ii) balancing redox strength and visible light absorption. Furthermore, the interactions between the Au-TiO2 clusters and a single water molecule have been studied. It will open up new avenues for exploring controlled photocatalysts in semiconductor-based quantum-confined systems.

20.
Aging (Albany NY) ; 16(6): 5288-5310, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38461439

RESUMO

INTRODUCTION: Regulatory T cells (Tregs) play important roles in tumor immunosuppression and immune escape. The aim of the present study was to construct a novel Tregs-associated biomarker for the prediction of tumour immune microenvironment (TIME), clinical outcomes, and individualised treatment in hepatocellular carcinoma (HCC). METHODS: Single-cell sequencing data were obtained from the three independent cohorts. Cox and LASSO regression were utilised to develop the Tregs Related Scoring System (TRSSys). GSE140520, ICGC-LIRI and CHCC cohorts were used for the validation of TRSSys. Kaplan-Meier, ROC, and Cox regression were utilised for the evaluation of TRSSys. The ESTIMATE, TIMER 2.0, and ssGSEA algorithm were utilised to determine the value of TRSSys in predicting the TIME. GSVA, GO, KEGG, and TMB analyses were used for mechanistic exploration. Finally, the value of TRSSys in predicting drug sensitivity was evaluated based on the oncoPredict algorithm. RESULTS: Comprehensive validation showed that TRSSys had good prognostic predictive efficacy and applicability. Additionally, ssGSEA, TIMER and ESTIMATE algorithm suggested that TRSSys could help to distinguish different TIME subtypes and determine the beneficiary population of immunotherapy. Finally, the oncoPredict algorithm suggests that TRSSys provides a basis for individualised treatment. CONCLUSIONS: TRSSys constructed in the current study is a novel HCC prognostic prediction biomarker with good predictive efficacy and stability. Additionally, risk stratification based on TRSSys can help to identify the TIME landscape subtypes and provide a basis for individualized treatment options.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Linfócitos T Reguladores , Neoplasias Hepáticas/terapia , Prognóstico , Microambiente Tumoral , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa