Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834067

RESUMO

Virus-like particles (VLPs) have been proposed as an attractive tool in SARS-CoV-2 vaccine development, both as (1) a vaccine candidate with high immunogenicity and low reactogenicity and (2) a substitute for live virus in functional and neutralization assays. Though multiple SARS-CoV-2 VLP designs have already been explored in Sf9 insect cells, a key parameter ensuring VLPs are a viable platform is the VLP spike yield (i.e., spike protein content in VLP), which has largely been unreported. In this study, we show that the common strategy of producing SARS-CoV-2 VLPs by expressing spike protein in combination with the native coronavirus membrane and/or envelope protein forms VLPs, but at a critically low spike yield (~0.04-0.08 mg/L). In contrast, fusing the spike ectodomain to the influenza HA transmembrane domain and cytoplasmic tail and co-expressing M1 increased VLP spike yield to ~0.4 mg/L. More importantly, this increased yield translated to a greater VLP spike antigen density (~96 spike monomers/VLP) that more closely resembles that of native SARS-CoV-2 virus (~72-144 Spike monomers/virion). Pseudotyping further allowed for production of functional alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) SARS-CoV-2 VLPs that bound to the target ACE2 receptor. Finally, we demonstrated the utility of pseudotyped VLPs to test neutralizing antibody activity using a simple, acellular ELISA-based assay performed at biosafety level 1 (BSL-1). Taken together, this study highlights the advantage of pseudotyping over native SARS-CoV-2 VLP designs in achieving higher VLP spike yield and demonstrates the usefulness of pseudotyped VLPs as a surrogate for live virus in vaccine and therapeutic development against SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Antivirais , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , Anticorpos Neutralizantes
2.
Arthritis Rheumatol ; 74(12): 2024-2031, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35762881

RESUMO

OBJECTIVE: Cutaneous inflammation can signal disease in juvenile dermatomyositis (DM) and childhood-onset systemic lupus erythematosus (cSLE), but we do not fully understand cellular mechanisms of cutaneous inflammation. In this study, we used imaging mass cytometry to characterize cutaneous inflammatory cell populations and cell-cell interactions in juvenile DM as compared to cSLE. METHODS: We performed imaging mass cytometry analysis on skin biopsy samples from juvenile DM patients (n = 6) and cSLE patients (n = 4). Tissue slides were processed and incubated with metal-tagged antibodies for CD14, CD15, CD16, CD56, CD68, CD11c, HLA-DR, blood dendritic cell antigen 2, CD20, CD27, CD138, CD4, CD8, E-cadherin, CD31, pan-keratin, and type I collagen. Stained tissue was ablated, and raw data were acquired using the Hyperion imaging system. We utilized the Phenograph unsupervised clustering algorithm to determine cell marker expression and permutation test by histoCAT to perform neighborhood analysis. RESULTS: We identified 14 cell populations in juvenile DM and cSLE skin, including CD14+ and CD68+ macrophages, myeloid and plasmacytoid dendritic cells (pDCs), CD4+ and CD8+ T cells, and B cells. Overall, cSLE skin had a higher inflammatory cell infiltrate, with increased CD14+ macrophages, pDCs, and CD8+ T cells and immune cell-immune cell interactions. Juvenile DM skin displayed a stronger innate immune signature, with a higher overall percentage of CD14+ macrophages and prominent endothelial cell-immune cell interaction. CONCLUSION: Our findings identify immune cell population differences, including CD14+ macrophages, pDCs, and CD8+ T cells, in juvenile DM skin compared to cSLE skin, and highlight a predominant innate immune signature and endothelial cell-immune cell interaction in juvenile DM, providing insight into candidate cell populations and interactions to better understand disease-specific pathophysiology.


Assuntos
Dermatomiosite , Lúpus Eritematoso Sistêmico , Humanos , Criança , Dermatomiosite/metabolismo , Pele/patologia , Lúpus Eritematoso Sistêmico/metabolismo , Comunicação Celular , Imunidade Inata , Células Endoteliais/metabolismo , Citometria por Imagem , Inflamação/metabolismo
3.
Sci Transl Med ; 14(642): eabn2263, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35476593

RESUMO

Cutaneous lupus erythematosus (CLE) is a disfiguring and poorly understood condition frequently associated with systemic lupus. Previous studies suggest that nonlesional keratinocytes play a role in disease predisposition, but this has not been investigated in a comprehensive manner or in the context of other cell populations. To investigate CLE immunopathogenesis, normal-appearing skin, lesional skin, and circulating immune cells from lupus patients were analyzed via integrated single-cell RNA sequencing and spatial RNA sequencing. We demonstrate that normal-appearing skin of patients with lupus represents a type I interferon-rich, prelesional environment that skews gene transcription in all major skin cell types and markedly distorts predicted cell-cell communication networks. We also show that lupus-enriched CD16+ dendritic cells undergo robust interferon education in the skin, thereby gaining proinflammatory phenotypes. Together, our data provide a comprehensive characterization of lesional and nonlesional skin in lupus and suggest a role for skin education of CD16+ dendritic cells in CLE pathogenesis.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Cutâneo , Humanos , Inflamação/patologia , Interferon Tipo I/metabolismo , Queratinócitos/patologia , Células Mieloides/metabolismo
4.
Front Immunol ; 12: 775353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868043

RESUMO

Cutaneous lupus erythematosus (CLE) is a chronic inflammatory skin disease characterized by a diverse cadre of clinical presentations. CLE commonly occurs in patients with systemic lupus erythematosus (SLE), and CLE can also develop in the absence of systemic disease. Although CLE is a complex and heterogeneous disease, several studies have identified common signaling pathways, including those of type I interferons (IFNs), that play a key role in driving cutaneous inflammation across all CLE subsets. However, discriminating factors that drive different phenotypes of skin lesions remain to be determined. Thus, we sought to understand the skin-associated cellular and transcriptional differences in CLE subsets and how the different types of cutaneous inflammation relate to the presence of systemic lupus disease. In this study, we utilized two distinct cohorts comprising a total of 150 CLE lesional biopsies to compare discoid lupus erythematosus (DLE), subacute cutaneous lupus erythematosus (SCLE), and acute cutaneous lupus erythematosus (ACLE) in patients with and without associated SLE. Using an unbiased approach, we demonstrated a CLE subtype-dependent gradient of B cell enrichment in the skin, with DLE lesions harboring a more dominant skin B cell transcriptional signature and enrichment of B cells on immunostaining compared to ACLE and SCLE. Additionally, we observed a significant increase in B cell signatures in the lesional skin from patients with isolated CLE compared with similar lesions from patients with systemic lupus. This trend was driven primarily by differences in the DLE subgroup. Our work thus shows that skin-associated B cell responses distinguish CLE subtypes in patients with and without associated SLE, suggesting that B cell function in skin may be an important link between cutaneous lupus and systemic disease activity.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Suscetibilidade a Doenças , Lúpus Eritematoso Cutâneo/etiologia , Lúpus Eritematoso Cutâneo/metabolismo , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Biologia Computacional/métodos , Diagnóstico Diferencial , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunoglobulinas/genética , Imuno-Histoquímica , Lúpus Eritematoso Cutâneo/diagnóstico , Lúpus Eritematoso Sistêmico/diagnóstico
5.
JCI Insight ; 5(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32853177

RESUMO

Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease characterized by chronic abscess formation and development of multiple draining sinus tracts in the groin, axillae, and perineum. Using proteomic and transcriptomic approaches, we characterized the inflammatory responses in HS in depth, revealing immune responses centered on IFN-γ, IL-36, and TNF, with lesser contribution from IL-17A. We further identified B cells and plasma cells, with associated increases in immunoglobulin production and complement activation, as pivotal players in HS pathogenesis, with Bruton's tyrosine kinase (BTK) and spleen tyrosine kinase (SYK) pathway activation as a central signal transduction network in HS. These data provide preclinical evidence to accelerate the path toward clinical trials targeting BTK and SYK signaling in moderate-to-severe HS.


Assuntos
Linfócitos B/imunologia , Biomarcadores/análise , Regulação da Expressão Gênica , Hidradenite Supurativa/patologia , Plasmócitos/imunologia , Proteoma/metabolismo , Transcriptoma , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Linfócitos B/metabolismo , Linfócitos B/patologia , Estudos de Casos e Controles , Redes Reguladoras de Genes , Hidradenite Supurativa/genética , Hidradenite Supurativa/imunologia , Hidradenite Supurativa/metabolismo , Humanos , Plasmócitos/metabolismo , Plasmócitos/patologia , Proteoma/análise , Transdução de Sinais , Análise de Célula Única , Quinase Syk/genética , Quinase Syk/metabolismo
6.
Nat Catal ; 2(9): 809-819, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33134840

RESUMO

Cooperative enzyme catalysis in nature has long inspired the application of engineered multi-enzyme assemblies for industrial biocatalysis. Despite considerable interest, efforts to harness the activity of cell-surface displayed multi-enzyme assemblies have been based on trial and error rather than rational design due to a lack of quantitative tools. In this study, we developed a quantitative approach to whole-cell biocatalyst characterization enabling a comprehensive study of how yeast-surface displayed multi-enzyme assemblies form. Here we show that the multi-enzyme assembly efficiency is limited by molecular crowding on the yeast cell surface, and that maximizing enzyme density is the most important parameter for enhancing cellulose hydrolytic performance. Interestingly, we also observed that proximity effects are only synergistic when the average inter-enzyme distance is > ~130 nm. The findings and the quantitative approach developed in this work should help to advance the field of biocatalyst engineering from trial and error to rational design.

7.
Ind Eng Chem Res ; 57(31): 10061-10070, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30886455

RESUMO

Protein therapeutics is a rapidly growing segment of the pharmaceutical market. Currently, the majority of protein therapeutics are manufactured in mammalian cells for their ability to generate safe and efficacious human-like glycoproteins. The high cost of using mammalian cells for manufacturing has motivated a constant search for alternative host platforms. Insect cells have begun to emerge as a promising candidate, largely due to the development of the baculovirus expression vector system. While there are continuing efforts to improve insect-baculovirus expression for producing protein therapeutics, key limitations including cell lysis and the lack of homogeneous humanized glycosylation still remain. The field has started to see a movement toward virus-less gene expression approaches, notably the use of clustered regularly interspaced short palindromic repeats to address these shortcomings. This review highlights recent technological advances that are realizing the transformative potential of insect cells for the manufacturing and development of protein therapeutics.

8.
J Mater Chem B ; 4(9): 1633-1639, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32263016

RESUMO

The strategies of pathogens to evade the human immune system are highly sophisticated and modulate a variety of inflammatory pathways. The similarities in the demands for modulation of inflammatory responses during disease treatment and during pathogenic infection provide opportunities to use pathogenic virulence factors to develop a new class of therapeutic materials that control inflammation. In this work, we harness a strategy from Porphyromonas gingivalis by transforming its major virulence factor, an arginine-specific cysteine protease, into self-assembled protease-inorganic hybrid supraparticles. The cysteine protease degrades the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α). It is an irreversible inhibition of TNF-α, which avoids some of the adverse effects of current TNF-α antagonists. We fabricated self-assembled porous supraparticles that specifically incorporate the pathogen-derived protease and showed improved inactivation of TNF-α over soluble enzyme, creating a potential therapeutic for various autoimmune diseases or other sources of inflammation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa