Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Biol Ther ; 24(1): 2253586, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710391

RESUMO

Lung adenocarcinoma is one of the leading causes of cancer-related mortality globally. Various treatment approaches and drugs had little influence on overall survival; thus, new drugs and treatment strategies are needed. Drug repositioning (repurposing) seems a favorable approach considering that developing new drugs needs much more time and costs. We performed a meta-analysis on 6 microarray datasets to obtain the main genes with significantly altered expression in lung adenocarcinoma. Following that, we found major gene clusters and hub genes. We assessed their enrichment in biological pathways to get insight into the underlying biological process involved in lung adenocarcinoma pathogenesis. The L1000 database was explored for drug perturbations that might reverse the expression of differentially expressed genes in lung adenocarcinoma. We evaluated the potential drug combinations that interact the most with hub genes and hence have the most potential to reverse the disease process. A total of 2148 differentially expressed genes were identified. Six main gene clusters and 27 significant hub genes mainly involved in cell cycle regulation have been identified. By assessing the interaction between 3 drugs and hub genes and information gained from previous clinical investigations, we suggested the three possible repurposed drug combinations, Vorinostat - Dorsomorphin, PP-110 - Dorsomorphin, and Puromycin - Vorinostat with a high chance of success in clinical trials.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Reposicionamento de Medicamentos , Vorinostat , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Combinação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética
2.
Transl Oncol ; 28: 101611, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586189

RESUMO

Gastric cancer is the fourth leading cause of cancer-related mortality and one of the most commonly diagnosed malignancies worldwide. Gastric adenocarcinoma (GAC) accounts for the majority of gastric cancer cases. Circular RNAs (circRNAs) have been shown to be associated with carcinogenesis and cancer progression. This research aims to investigate GAC-associated circRNAs and the underlying mechanisms of circRNA-miRNA-mRNA networks in the development and progression of GAC. Differentially expressed miRNAs and mRNAs (DEMs and DEGs) were identified in Gene Expression Omnibus (GEO) microarray datasets using the R package Limma. A microarray meta-analysis was performed to identify potential GAC-associated circRNAs with high statistical power, resulting in 13 up-regulated and 19 down-regulated circRNAs. CircRNA-miRNA-mRNA networks were constructed by combining predicted and experimentally validated databases and considering differentially expressed miRNAs and mRNAs. The constructed ceRNA networks revealed the potential regulatory effect of hsa_circ_0002019 and hsa_circ_0074736 on key survival-related genes. The expression levels of these two circRNAs were measured in plasma samples from GAC patients and healthy controls using SYBR Green-based real-time PCR. Axon guidance, cellular senescence, AGE-RAGE signaling pathway in diabetic complications, and AMPK signaling pathway were among the major significant (P-value <0.05) enriched pathways of "main mRNAs" in the constructed ceRNA networks. In conclusion, we identified strongly correlated circRNAs and their likely mechanisms of action in GAC, which may improve the knowledge of regulatory networks underlying GAC formation and contribute to developing better strategies for early diagnosis, prognosis, and treatment.

3.
Front Genet ; 12: 679446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220952

RESUMO

Although it has been about 30 years since the discovery of circular RNAs (circRNAs) in mammalian cells, these subtypes of RNAs' capabilities have come into focus in recent years. The unique structure and various functional roles of circRNAs in many cellular processes have aroused researchers' interest and raised many questions about whether circRNAs can facilitate the diagnosis and treatment of diseases. To answer these questions, we will illustrate the main known functions and regulatory roles of circRNAs in the cell after presenting a brief history of the discovery of circRNAs and the main proposed theories of the biogenesis of circRNAs. Afterward, the practical application of circRNAs as biomarkers of different pathophysiological conditions will be discussed, mentioning some examples and challenges in this area. We also consider one of the main questions that human beings have always been faced, "the origin of life," and its possible connection to circRNAs. Finally, focusing on the various capabilities of circRNAs, we discuss their potential therapeutic applications considering the immunity response toward exogenous circRNAs. However, there are still disputes about the exact immune system reaction, which we will discuss in detail.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa