Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biol Reprod ; 107(2): 529-545, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35357464

RESUMO

Uterine dysfunctions lead to fertility disorders and pregnancy complications. Normal uterine functions at pregnancy depend on crosstalk among multiple cell types in uterine microenvironments. Here, we performed the spatial transcriptomics and single-cell RNA-seq assays to determine local gene expression profiles at the embryo implantation site of the mouse uterus on pregnancy day 7.5 (D7.5). The spatial transcriptomic annotation identified 11 domains of distinct gene signatures, including a mesometrial myometrium, an anti-mesometrial myometrium, a mesometrial decidua enriched with natural killer cells, a vascular sinus zone for maternal vessel remodeling, a fetal-maternal interface, a primary decidual zone, a transition decidual zone, a secondary decidual zone, undifferentiated stroma, uterine glands, and the embryo. The scRNA-Seq identified 12 types of cells in the D7.5 uterus including three types of stromal fibroblasts with differentiated and undifferentiated markers, one cluster of epithelium including luminal and glandular epithelium, mesothelium, endothelia, pericytes, myelomonocytic cell, natural killer cells, and lymphocyte B. These single-cell RNA signatures were then utilized to deconvolute the cell-type compositions of each individual uterine microenvironment. Functional annotation assays on spatial transcriptomic data revealed uterine microenvironments with distinguished metabolic preferences, immune responses, and various cellular behaviors that are regulated by region-specific endocrine and paracrine signals. Global interactome among regions is also projected based on the spatial transcriptomic data. This study provides high-resolution transcriptome profiles with locality information at the embryo implantation site to facilitate further investigations on molecular mechanisms for normal pregnancy progression.


Assuntos
Transcriptoma , Útero , Animais , Decídua/fisiologia , Implantação do Embrião/genética , Epitélio , Feminino , Células Matadoras Naturais , Camundongos , Miométrio , Gravidez , Útero/metabolismo
2.
Drug Metab Dispos ; 50(7): 1027-1041, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35197313

RESUMO

Sulfotransferases are ubiquitous enzymes that transfer a sulfo group from the universal cofactor donor 3'-phosphoadenosine 5'-phosphosulfate to a broad range of acceptor substrates. In humans, the cytosolic sulfotransferases are involved in the sulfation of endogenous compounds such as steroids, neurotransmitters, hormones, and bile acids as well as xenobiotics including drugs, toxins, and environmental chemicals. The Golgi associated membrane-bound sulfotransferases are involved in post-translational modification of macromolecules from glycosaminoglycans to proteins. The sulfation of small molecules can have profound biologic effects on the functionality of the acceptor, including activation, deactivation, or enhanced metabolism and elimination. Sulfation of macromolecules has been shown to regulate a number of physiologic and pathophysiological pathways by enhancing binding affinity to regulatory proteins or binding partners. Over the last 25 years, crystal structures of these enzymes have provided a wealth of information on the mechanisms of this process and the specificity of these enzymes. This review will focus on the general commonalities of the sulfotransferases, from enzyme structure to catalytic mechanism as well as providing examples into how structural information is being used to either design drugs that inhibit sulfotransferases or to modify the enzymes to improve drug synthesis. SIGNIFICANCE STATEMENT: This manuscript honors Dr. Masahiko Negishi's contribution to the understanding of sulfotransferase mechanism, specificity, and roles in biology by analyzing the crystal structures that have been solved over the last 25 years.


Assuntos
Glicômica , Sulfotransferases , Humanos , Inativação Metabólica , Fosfoadenosina Fosfossulfato/metabolismo , Esteroides , Sulfotransferases/metabolismo
3.
Ann Hum Genet ; 85(2): 80-91, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33249558

RESUMO

Phosphodiesterase 3A (PDE3A) is an enzyme that plays an important role in the regulation of cyclic adenosine monophosphate (cAMP)-mediated intracellular signaling in cardiac myocytes and platelets. PDE3A hydrolyzes cAMP, which results in a decrease in intracellular cAMP levels and leads to platelet activation. Whole-exome sequencing of 50 DNA samples from a healthy Korean population revealed a total of 13 single nucleotide polymorphisms including five missense variants, D12N, Y497C, H504Q, C707R, and A980V. Recombinant proteins for the five variants of PDE3A (and wild-type protein) were expressed in a FreeStyle 293 expression system with site-directed mutagenesis. The expression of the recombinant PDE3A proteins was confirmed with Western blotting. Catalytic activity of the PDE3A missense variants and wild-type enzyme was measured with a PDE-based assay. Effects of the missense variants on the inhibition of PDE3A activity by cilostazol were also investigated. All variant proteins showed reduced activity (33-53%; p < .0001) compared to the wild-type protein. In addition, PDE3A activity was inhibited by cilostazol in a dose-dependent manner and was further suppressed in the missense variants. Specifically, the PDE3A Y497C showed significantly reduced activity, consistent with the predictions of in silico analyses. The present study provides evidence that individuals carrying the PDE3A Y497C variant may have lower enzyme activity for cAMP hydrolysis, which could cause interindividual variation in cAMP-mediated physiological functions.


Assuntos
Cilostazol/administração & dosagem , AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Ativação Plaquetária/efeitos dos fármacos , Adulto , Plaquetas/efeitos dos fármacos , Cilostazol/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ativação Plaquetária/genética , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/efeitos adversos , Polimorfismo Genético/genética , Transdução de Sinais/efeitos dos fármacos , Sequenciamento do Exoma
4.
Toxicol Appl Pharmacol ; 330: 100-106, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28729181

RESUMO

Because macrophages respond to a variety of pathological and pharmacological reagents, understanding the role of P450s in macrophages is important for therapeutic intervention. There has been a lack of research on CYP4 in macrophages, but fatty acid accumulation and lipid trafficking in macrophages have been suggested to be a main cause of atherosclerosis. All human CYP4 genes (n=12) were screened in THP1 macrophages by gene-specific reverse transcriptase-polymerase chain reaction (RT-PCR). Only CYP4V2 exhibited strong expression of both mRNA and protein. Expression levels of both CYP4V2 mRNA and protein were significantly reduced after treatment with peroxisome proliferator-activated receptor gamma (PPARγ) antagonist GW9662. However, the expression levels of CYP4V2 were not changed by PPARα antagonist (GW6471) and liver X receptor alpha antagonist (22-S hydroxycholesterol). A metabolite of the CYP4V2 enzyme, 12-hydroxydodecanoic acid, was detected in THP1 macrophages, and this metabolite was significantly decreased after treatment with the PPARγ inhibitor GW9662 (>80% decreased, p<0.05). In summary, fatty acid metabolizing protein CYP4V2 was identified in human THP1 macrophages, and its expression was regulated by PPARγ. Further study is required to understand the role of CYP4V2 with regard to fat accumulation in the activated macrophage and atherosclerotic plaque development.


Assuntos
Família 4 do Citocromo P450/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Macrófagos/enzimologia , PPAR alfa/farmacologia , Anilidas/farmacologia , Linhagem Celular , Família 4 do Citocromo P450/biossíntese , Ácidos Graxos/metabolismo , Humanos , Hidroxicolesteróis/farmacologia , Ácidos Láuricos/metabolismo , Receptores X do Fígado/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , PPAR alfa/antagonistas & inibidores , PPAR alfa/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Acetato de Tetradecanoilforbol/farmacologia , Transcrição Gênica
5.
Arch Biochem Biophys ; 620: 43-51, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28347661

RESUMO

CYP4F11, together with CYP4F2, plays an important role in the synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid. We identified 21 variants by whole exome sequencing, including 4 non-synonymous variants in Korean subjects. The proteins of the wild-type CYP4F11 and the four coding variants (C276R, D315N, D374Y, and D446N) were expressed in Escherichia coli DH5α cells and purified to give cytochrome P450-specific carbon monoxide difference spectra. Wild-type CYP4F2 was also expressed and purified to compare its activity with the CYP4F11 wild-type. Wild-type CYP4F11 exhibited the highest maximal clearance for erythromycin N-demethylase activity followed by the variants D374Y, D446N, C276R, and D315N. In particular, the CYP4F11 D315N protein showed about 50% decrease in intrinsic clearance compared to the wild type. The ability of wild-type CYP4F11 and the variants to synthesize 20-HETE from arachidonic acid was similar; the CYP4F11 D315N variant, however, showed only 68% of wild-type activity. Furthermore, the ability of CYP4F2 to synthesize 20-HETE was 1.7-fold greater than that of CYP4F11. Overall, our results suggest that the metabolism of CYP4F11 substrates may be reduced in individuals carrying the CYP4F11 D315N genetic variant and individuals carrying the common D446N CYP4F11 variant likely exhibit comparable 20-HETE synthesis as individuals expressing wild-type CYP4F11.


Assuntos
Ácido Araquidônico , Família 4 do Citocromo P450 , Exoma , Ácidos Hidroxieicosatetraenoicos , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Família 4 do Citocromo P450/química , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Eritromicina/química , Feminino , Humanos , Ácidos Hidroxieicosatetraenoicos/biossíntese , Ácidos Hidroxieicosatetraenoicos/química , Masculino , Proteínas Recombinantes
6.
Arch Biochem Biophys ; 569: 10-8, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25623425

RESUMO

Prostacyclin synthase (CYP8A1) is an enzyme responsible for the biosynthesis of prostacyclin (PGI2) which inhibits platelet activation and exhibits anti-inflammatory effect. The objectives of this study were to identify CYP8A1 genetic variants and characterize functional consequences of CYP8A1 variants. In total, 27 variants including four previously unidentified single-nucleotide polymorphisms (SNPs) were identified by direct DNA sequencing in Koreans (n=48). Among them, CYP8A1 A447T and E314Stop were newly assigned as CYP8A1(∗)5 and CYP8A1(∗)6 by the Human Cytochrome P450 Allele Nomenclature Committee, respectively. CYP8A1(∗)5 was found in the heme binding area in three individuals as a heterozygous mutation. To investigate the functional change of CYP8A1(∗)5, CYP8A1(∗)5 and wild-type CYP8A1 protein were overexpressed in an Escherichia coli expression system and purified. Metabolism of PGH2 by the CYP8A1(∗)5 protein exhibited significantly decreased activity, resulting in a 45% decrease in Vmax and a 1.8-fold decrease in intrinsic clearance compared to the wild-type. Based on the predicted crystal structure of CYP8A1(∗)5 using the Molecular Operating Environment platform, the distance from CYP8A1 Cys441 to the heme was altered with a significantly changed binding free energy for the mutant protein. Further studies would be needed to determine the effect of CYP8A1(∗)5 on PGI2 levels in humans.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Variação Genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Códon sem Sentido , Simulação por Computador , Sistema Enzimático do Citocromo P-450/química , DNA/genética , Heme/metabolismo , Heterozigoto , Humanos , Cinética , Desequilíbrio de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , República da Coreia , Homologia de Sequência de Aminoácidos
7.
Methods Mol Biol ; 2418: 41-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35119658

RESUMO

Estrogen receptor α (ERα) conserves a phosphorylation motif at Serine 216. This site constitutes a protein kinase C phosphorylation motif located within the DNA binding domain (DBD) of ERα. The liver plays a critical role in the regulation of metabolism of various xenobiotics, fatty acids, and cholesterol or endogenous compounds. Moreover, numerous metabolizing enzymes are mainly expressed in the liver. In this chapter, we describe several practical experimental procedures confirming that mouse ERα is phosphorylated at serine 216 in livers upon phenobarbital (PB) treatment. Also, this phosphorylation regulates the expression of estrogen sulfotransferase gene (SULT1E1) which has an important role to sulfate and inactivate estrogen. In response to PB, the conserved motif within the DBD activates the Sult1e1 gene. When this motif was mutated, the activation of Sult1e1 was suppressed significantly. This chapter also describes the use of a phospho-peptide antibody (αP-S216) in the chromatin immunoprecipitation (ChIP) assay, and the co-immunoprecipitation (Co-IP) assay visualized by Western blot analysis.


Assuntos
Receptor alfa de Estrogênio , Serina , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Imunoprecipitação , Fígado/metabolismo , Camundongos , Fosforilação/fisiologia , Serina/metabolismo
8.
Methods Mol Biol ; 2418: 63-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35119660

RESUMO

Serine 216 constitutes a protein kinase C phosphorylation motif located within the DNA binding domain of estrogen receptor α (ERα). In this chapter, we present experimental procedures confirming that mouse ERα is phosphorylated at serine 216 in peripheral blood neutrophils and in neutrophils that infiltrate the uterus, as well as the role of phosphoserine 216 in neutrophil migration. A phospho-peptide antibody (αP-S216) was utilized in Western blot, immunohistochemistry, and double immunofluorescence staining to detect this phosphorylation of an endogenous ERα. Both immunohistochemistry (with αP-S216 or neutrophil marker Ly6G antibody) and double immunofluorescence staining of mouse uterine sections prepared from C3H/HeNCrIBR females revealed that phosphorylated ERα was expressed in all infiltrating neutrophils during hormonal cycles but not in any other of the other uterine cells. Neutrophils infiltrate the uterus from the bloodstream. White blood cells (WBC) were prepared from peripheral blood of C3H/HeNCrIBR females or males and double immunostained. Blood neutrophils also expressed phosphorylated ERα but in only about 20% of cells in both sexes. Only the neutrophils expressing phosphorylated ERα spontaneously migrated in in vitro Transwell migration assays and infiltrated the uterus in mice.


Assuntos
Receptor alfa de Estrogênio , Serina , Animais , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Neutrófilos/metabolismo , Fosforilação , Serina/metabolismo
9.
J Pers Med ; 11(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799763

RESUMO

Estrogen sulfotransferase (SULT1E1) is a phase II enzyme that sulfates estrogens to inactivate them and regulate their homeostasis. This enzyme is also involved in the sulfation of thyroid hormones and several marketed medicines. Though the profound action of SULT1E1 in molecular/pathological biology has been extensively studied, its genetic variants and functional studies have been comparatively rarely studied. Genetic variants of this gene are associated with some diseases, especially sex-hormone-related cancers. Comprehending the role and polymorphisms of SULT1E1 is crucial to developing and integrating its clinical relevance; therefore, this study gathered and reviewed various literature studies to outline several aspects of the function, molecular regulation, and polymorphisms of SULT1E1.

10.
Biochem Pharmacol ; 190: 114662, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34157297

RESUMO

Circulating estrogens levels significantly decrease in menopause and levels off in postmenopausal women. Accordingly, the liver represses levels of enzymes and membrane transporters, thereby decreasing capability of inactivating and excreting estrogens. Women increasingly develop type 2 diabetes during or after menopause. Estrogens are known to promote liver diseases in these women. Here, we have found that the estrogen inactivating sulfotransferase (SULT1E1) and an ATP-binding cassette subfamily G member 2 (ABCG2), a gene encoding breast cancer resistance protein that exports sulfated estrogens, increased their expression levels in diabetic women but not men. For the sulfotransferase gene, phosphorylated nuclear receptors ERα and RORα, at Ser212 and Ser100, respectively, bind their response elements to activate the SULT1E1 promoter in women. This coordinated increase in estrogen inactivation and excretion, and the phosphorylated nuclear receptor-mediated gene activation could be a defense mechanism against toxicities of estrogens through inactivation and excretion in the livers of women.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Receptor alfa de Estrogênio/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Sulfotransferases/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Animais , Células COS , Chlorocebus aethiops , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Humanos , Fígado , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fatores Sexuais , Sulfotransferases/genética
11.
Sci Rep ; 10(1): 5001, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193417

RESUMO

Estrogen sulfotransferase (SULT1E1) inactivates estrogen and regulates its metabolic homeostats. Whereas SULT1E1 is expressed low in the liver of adult mice, it is induced by phenobarbital (PB) treatment or spontaneously in diabetic livers via nuclear receptors. Utilizing constitutive active/androstane receptor (CAR) KO, estrogen receptor α (ERα KO, phosphorylation-blocked ERα S216A KI mice, it is now demonstrated that, after being activated by PB, CAR binds and recruits ERα onto the Sulte1 promoter for subsequent phosphorylation at Ser216. This phosphorylation tightens CAR interacting with ERα and to activates the promoter. Hepatic SULT1E1 mRNA levels are constitutively up-regulated in type 1 diabetic Akita mice; CAR spontaneously accumulates in the nucleus and activates the Sult1e1 promoter by recruiting phosphorylated ERα in the liver as observed with PB-induced livers. Thus, this CAR-phosphorylated ERα signaling enables these two nuclear receptors to communicate, activating the Sult1e1 gene in response to either PB or diabetes in mice. ERα phosphorylation may integrate CAR into estrogen actions, providing insights into understanding drug-hormone interactions in clinical therapy.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sulfotransferases/metabolismo , Animais , Linhagem Celular Tumoral , Receptor Constitutivo de Androstano , Humanos , Camundongos , Fenobarbital/metabolismo , Fosforilação , Sulfotransferases/genética
12.
Drug Metab Pharmacokinet ; 34(3): 201-208, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30992242

RESUMO

The objective of the present study was to investigate the effects of cytochrome b5 (cytb5) on the drug metabolism catalyzed by CYP2C9, CYP2C19 and CYP3A4. Activities of CYP2C9, CYP2C19, and CYP3A4 were determined by using the prototypical substrates tolbutamide, omeprazole and midazolam, respectively. Cytb5 protein and mRNA contents showed large inter-individual variations with 11- and 6-fold range, respectively. All of three P450s showed an increased activity in proportion to the amount of cytb5 expression. Particularly, CYP3A4 showed the strongest correlation between cytb5 protein amount and the activity, followed by CYP2C9 and CYP2C19. The putative splicing variant, c.288G>A (rs7238987) was identified and was screened in 36 liver tissues by direct DNA sequencing. Liver tissues having a splicing variant exhibited unexpected sizes of cytb5 mRNA and a decreased expression tendency of cytb5 protein compared to the wild-type. A decreased activity in the metabolism of the CYP2C19 substrate omeprazole was observed in liver tissues carrying the splicing variant when compared to the wild-type Cytb5 (P < 0.05). The present results propose that different expression of cytb5 can cause variations in CYP mediated drug metabolism, which may explain, at least in part, the inter-individual difference in drug responses in addition to the CYP genetic polymorphisms.


Assuntos
Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromos b5/genética , Variação Genética , Fígado/metabolismo , Processamento Alternativo , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP3A/genética , Citocromos b5/metabolismo , Humanos , Técnicas In Vitro , Fígado/enzimologia , Midazolam/metabolismo , Omeprazol/metabolismo , Tolbutamida/metabolismo
13.
J Pharm Sci ; 108(9): 3106-3111, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30991038

RESUMO

Rifampin (RIF) has been widely used for the treatment of bacterial infections, including tuberculosis (TB). Treatment of drug-resistant TB is a global problem because of reduced drug efficacy. The present study determined the effect of RIF on MDR1 gene (P-glycoprotein, P-gp) expression in THP1 macrophages and analyzed the intracellular concentration of the anti-TB drug prothionamide in the presence of RIF. RIF treatment significantly induced MDR1 protein and mRNA levels in phorbol 12-myristate 13-acetate-stimulated THP1 macrophages (p < 0.001 and 0.01, respectively). The pregnane X receptor inhibitors resveratrol and ketoconazole significantly suppressed RIF-induced P-gp expression in THP1 macrophages (p < 0.05). RIF-treated THP1 macrophages also exhibited strong efflux of P-gp substrate, resulting in a reduced intracellular concentration of rhodamine-123 and prothionamide (p < 0.01 and 0.05, respectively). By contrast, the P-gp inhibitor cyclosporine A significantly increased intracellular concentration of rhodamine-123 and prothionamide (p < 0.001 and 0.05, respectively). The present results suggest that the usage of RIF together with P-gp-substrate drugs to treat TB may lead to deteriorated treatment efficacy because of the lower intracellular drug concentration. Further studies would be necessary to know the influence of RIF-induced P-gp induction on the treatment outcome of patients with TB.


Assuntos
Antituberculosos/farmacologia , Macrófagos/metabolismo , Protionamida/farmacocinética , Rifampina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antituberculosos/uso terapêutico , Linhagem Celular Tumoral , Antagonismo de Drogas , Farmacorresistência Bacteriana/efeitos dos fármacos , Quimioterapia Combinada/efeitos adversos , Humanos , Líquido Intracelular/metabolismo , Protionamida/uso terapêutico , Rifampina/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Regulação para Cima/efeitos dos fármacos
14.
FEBS Lett ; 592(16): 2760-2768, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30025153

RESUMO

The estrogen sulfotransferase SULT1E1 sulfates and inactivates estrogen, which is reactivated via desulfation by steroid sulfatase, thus regulating estrogen homeostasis. Phenobarbital (PB), a clinical sedative, activates Sult1e1 gene transcription in mouse livers. Here, the molecular mechanism by which the nuclear receptors CAR, which is targeted by PB, and RORα communicate through phosphorylation to regulate Sult1e1 activation has been studied. RORα, a basal activity repressor of the Sult1e1 promoter, becomes phosphorylated at serine 100 and converts to an activator of the Sult1e1 promoter in response to PB. CAR regulates both the RORα phosphorylation and conversion. Our findings suggest that PB signals CAR to communicate with RORα via serine 100 phosphorylation, converting RORα from transcription repressor to activator of the Sult1e1 gene and inducing SULT1E1 expression in mouse livers.


Assuntos
Hipnóticos e Sedativos/farmacologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fenobarbital/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Sulfotransferases/genética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Receptor Constitutivo de Androstano , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Fígado/metabolismo , Camundongos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Fosforilação , Regiões Promotoras Genéticas/efeitos dos fármacos , Serina/metabolismo , Ativação Transcricional
15.
Int J Oncol ; 44(1): 327-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24190603

RESUMO

The present study was carried out to investigate the effect of 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonan-9-one (bispidinone) analogs on the in vitro growth of human cervical carcinoma (HeLa) cells. A series of 11 bispidinone analogs was synthesized with substituents, e.g., fluoro/methyl/ethyl/isopropyl/thiomethyl/methoxy groups, at various positions. These compounds were synthesized to identify which substituent and position induced the strongest cytotoxic effect in cancer cells. Among these synthetics, analog 9, which contains methoxy groups, had the most significant cytotoxic effect on HeLa cells, and its IC50 value was less than 13 µM. A WST-8 assay also showed that analog 9 inhibited the proliferation of HeLa cells. By using DNA content analysis, we found that analog 9 induced sub-G1 and G1 phase arrest in a time-dependent manner. A [3H]-thymidine incorporation assay suggested that analog 9 inhibited DNA replication in HeLa cells. On performing light microscopy, morphological changes such as cellular shrinkage and disruption, which are apoptotic features, were observed in HeLa cells. Annexin V/propidium iodide double staining and rhodamine-123 staining showed that analog 9 induced apoptosis and disrupted the intracellular mitochondrial membrane potential in HeLa cells. The western blot analysis results suggested that analog 9 induced mitochondria-mediated apoptosis. In addition, we have shown that analog 9 may play a role in the Fas signaling apoptotic pathway.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Mitocôndrias/efeitos dos fármacos , Neoplasias do Colo do Útero/tratamento farmacológico , Anexina A5/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/patologia
16.
Oncol Rep ; 30(4): 1929-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23863920

RESUMO

Cytochalasin B (CB) is a cell-permeable mycotoxin. It inhibits cytoplasmic division by blocking the formation of contractile microfilaments, it inhibits cell movement and induces nuclear extrusion. In the present study, we investigated the anticancer activity of CB in HeLa human cervical carcinoma cells. CB showed significant cytotoxicity, with an IC50 of 7.9 µM, in a WST-8 assay and significantly inhibited cell proliferation. Furthermore, results from Annexin V-FITC/propidium iodide double-staining indicated that CB induced early apoptosis of HeLa cells in a time-dependent manner. The cells exhibited apoptotic morphology, including cell shrinkage and nuclear condensation. CB induced cell cycle arrest at the S phase. We also observed inhibition of DNA replication in a [3H]-thymidine incorporation assay. Furthermore, CB induced a time-dependent increase in reactive oxygen species and a decrease in mitochondrial membrane potential. Western blot analysis showed an increase in levels of mitochondrial factors Bax and Bcl-2, which was followed by activation of caspase-9 and -3. These results suggested that CB induced apoptosis via a mitochondrial-dependent pathway in HeLa cells.


Assuntos
Apoptose/efeitos dos fármacos , Citocalasina B/farmacologia , Mitocôndrias/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Proteína X Associada a bcl-2/metabolismo
17.
Int J Oncol ; 39(6): 1609-17, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21833470

RESUMO

In the present study, a series of seven synthetic croma-kalim analogues were prepared and evaluated for cytotoxic effect on human cervical carcinoma HeLa cells using WST-8 assay. A preliminary screening of these cromakalim analogues showed that 1-[(3S,4R)-4-(2-ethoxy-4-methyl-1H-pyrrol-1-yl)-3-hydroxy- 2,2-dimethylchroman-6-yl-3-phenylurea (compound 6) had the highest cytotoxic effect (IC50 of 138 µM) and significantly inhibited HeLa cell proliferation after 36 h. In an effort to understand the cytotoxic mechanism of compound 6, we examined its effect on apoptosis and cell cycle distribution. Our results showed that compound 6 induced marked changes in apoptotic morphology and significantly increased early apoptosis of HeLa cells after 48 h by using Annexin V-FITC/PI dual staining assay. This apoptotic induction was associated with an increase in Bax expression, a decrease in Bcl-2 expression, release of cytochrome c and subsequent activation of caspase-9 and -3, which indicated that compound 6 induced apoptosis via caspase- and mitochondria-dependent pathway. By DNA content analysis and [3H]thymidine incorporation assay, compound 6 was found to induce an increase in the number of cells in G1 phase, accompanied by a decrease in the S phase to prevent DNA synthesis after 24 h of treatment. In addition, compound 6 caused significant DNA damage, as detected by the alkaline comet assay. Taken together, the data demonstrate that compound 6 induces apoptosis in HeLa cells through caspase- and mitochondria-dependent pathway and this apoptotic effect is associated with cell cycle arrest and DNA damage. These findings provide further understanding of the molecular mechanisms of compound 6 in cervical cancer.


Assuntos
Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Cromakalim/análogos & derivados , Cromakalim/química , Mitocôndrias/efeitos dos fármacos , Compostos de Fenilureia/toxicidade , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromakalim/toxicidade , Citocromos c/metabolismo , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Mitocôndrias/metabolismo , Compostos de Fenilureia/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa