Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 590(7846): 410-415, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597760

RESUMO

Current X-ray imaging technologies involving flat-panel detectors have difficulty in imaging three-dimensional objects because fabrication of large-area, flexible, silicon-based photodetectors on highly curved surfaces remains a challenge1-3. Here we demonstrate ultralong-lived X-ray trapping for flat-panel-free, high-resolution, three-dimensional imaging using a series of solution-processable, lanthanide-doped nanoscintillators. Corroborated by quantum mechanical simulations of defect formation and electronic structures, our experimental characterizations reveal that slow hopping of trapped electrons due to radiation-triggered anionic migration in host lattices can induce more than 30 days of persistent radioluminescence. We further demonstrate X-ray luminescence extension imaging with resolution greater than 20 line pairs per millimetre and optical memory longer than 15 days. These findings provide insight into mechanisms underlying X-ray energy conversion through enduring electron trapping and offer a paradigm to motivate future research in wearable X-ray detectors for patient-centred radiography and mammography, imaging-guided therapeutics, high-energy physics and deep learning in radiology.

2.
Nature ; 587(7835): 594-599, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33239799

RESUMO

The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission1, optoelectronics2,3, photon frequency conversion4,5 and photocatalysis6,7. Molecular triplet excitons (bound electron-hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels8. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin-orbit coupling9-11 or tuning of the singlet-triplet energy splitting12,13 via molecular design. Both these methods place constraints on the range of properties that can be modified and the molecular structures that can be used. Here we demonstrate that it is possible to control triplet dynamics by coupling organic molecules to lanthanide-doped inorganic insulating nanoparticles. This allows the classically forbidden transitions from the ground-state singlet to excited-state triplets to gain oscillator strength, enabling triplets to be directly generated on molecules via photon absorption. Photogenerated singlet excitons can be converted to triplet excitons on sub-10-picosecond timescales with unity efficiency by intersystem crossing. Triplet exciton states of the molecules can undergo energy transfer to the lanthanide ions with unity efficiency, which allows us to achieve luminescent harvesting of the dark triplet excitons. Furthermore, we demonstrate that the triplet excitons generated in the lanthanide nanoparticle-molecule hybrid systems by near-infrared photoexcitation can undergo efficient upconversion via a lanthanide-triplet excitation fusion process: this process enables endothermic upconversion and allows efficient upconversion from near-infrared to visible frequencies in the solid state. These results provide a new way to control triplet excitons, which is essential for many fields of optoelectronic and biomedical research.

3.
J Am Chem Soc ; 146(13): 9413-9421, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506128

RESUMO

Precise control of cellular signaling events during programmed cell death is crucial yet challenging for cancer therapy. The modulation of signal transduction in cancer cells holds promise but is limited by the lack of efficient, biocompatible, and spatiotemporally controllable approaches. Here we report a photodynamic strategy that modulates both apoptotic and pyroptotic cell death by altering caspase-3 protein activity and the associated signaling crosstalk. This strategy employs a mitochondria-targeting, near-infrared activatable probe (termed M-TOP) that functions via a type-I photochemical mechanism. M-TOP is less dependent on oxygen and more effective in treating drug-resistant cancer cells, even under hypoxic conditions. Our study shows that higher doses of M-TOP induce pyroptotic cell death via the caspase-3/gasdermin-E pathway, whereas lower doses lead to apoptosis. This photodynamic method is effective across diverse gasdermin-E-expressing cancer cells. Moreover, the M-TOP mediated shift from apoptotic to pyroptotic modulation can evoke a controlled inflammatory response, leading to a robust yet balanced immune reaction. This effectively inhibits both distal tumor growth and postsurgical tumor recurrence. This work demonstrates the feasibility of modulating intracellular signaling through the rational design of photodynamic anticancer drugs.


Assuntos
Gasderminas , Neoplasias , Humanos , Caspase 3/metabolismo , Apoptose , Transdução de Sinais , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Caspase 8/metabolismo , Caspase 8/farmacologia , Caspase 1/metabolismo , Caspase 1/farmacologia
4.
Acc Chem Res ; 56(4): 425-439, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36745051

RESUMO

Surface-modified lanthanide nanoparticles have been widely developed as an emerging class of therapeutics for cancer treatment because they exhibit several unique properties. First, lanthanide nanoparticles exhibit a variety of diagnostic capabilities suitable for various image-guided therapies. Second, a large number of therapeutic molecules can be accommodated on the surface of lanthanide nanoparticles, which can simultaneously achieve combined cancer therapy. Third, multivalent targeting ligands on lanthanide nanoparticles can be easily modified to achieve high affinity and specificity for target cells. Last but not least, lanthanide nanoparticles can be engineered for spatially and temporally controlled tumor therapy, which is critical for developing precise and personalized tumor therapy. Surface-modified lanthanide-doped nanoparticles are widely used in cancer phototherapy. This is due to their unique optical properties, including large anti-Stokes shifts, long-lasting luminescence, high photostability, and the capacity for near-infrared or X-ray excitation. Upon near-infrared irradiation, these nanoparticles can emit ultraviolet to visible light, which activates photosensitizers and photothermal agents to destroy tumor cells. Surface modification with special ligands that respond to tumor microenvironment changes, such as acidic pH, hypoxia, or redox reactions, can turn lanthanide nanoparticles into a smart nanoplatform for light-guided tumor chemotherapy and gene therapy. Surface-engineered lanthanide nanoparticles can include antigens that elicit tumor-specific immune responses, as well as immune activators that boost immunity, allowing distant and metastatic tumors to be eradicated. The design of ligands and surface chemistry is crucial for improving cancer therapy without causing side effects. In this Account, we classify surface-modified lanthanide nanoparticles for tumor therapy into four main domains: phototherapy, radiotherapy, chemotherapy, and biotherapy. We begin by introducing fundamental bioapplications and then discuss recent developments in tumor phototherapy (photodynamic therapy and photothermal therapy), radiotherapy, chemotherapy, and biotherapy (gene therapy and immunotherapy). We also assess the viability of a variety of strategies for eliminating tumor cells through innovative pathways. Finally, future opportunities and challenges for the development of more efficient lanthanide nanoprobes are discussed.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Fototerapia , Neoplasias/tratamento farmacológico , Raios Infravermelhos , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Nature ; 561(7721): 88-93, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30150772

RESUMO

The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.

6.
J Am Chem Soc ; 143(36): 14907-14915, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469145

RESUMO

Chemotherapy can induce toxicity in the central and peripheral nervous systems and result in chronic adverse reactions that impede continuous treatment and reduce patient quality of life. There is a current lack of research to predict, identify, and offset drug-induced neurotoxicity. Rapid and accurate assessment of potential neuropathy is crucial for cost-effective diagnosis and treatment. Here we report dynamic near-infrared upconversion imaging that allows intraneuronal transport to be traced in real time with millisecond resolution, but without photobleaching or blinking. Drug-induced neurotoxicity can be screened prior to phenotyping, on the basis of subtle abnormalities of kinetic characteristics in intraneuronal transport. Moreover, we demonstrate that combining the upconverting nanoplatform with machine learning offers a powerful tool for mapping chemotherapy-induced peripheral neuropathy and assessing drug-induced neurotoxicity.


Assuntos
Transporte Biológico/fisiologia , Substâncias Luminescentes/química , Nanopartículas Metálicas/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Animais , Antineoplásicos/efeitos adversos , Fluoretos/química , Gânglios Espinais/citologia , Neurônios/efeitos dos fármacos , Paclitaxel/efeitos adversos , Ratos Sprague-Dawley , Máquina de Vetores de Suporte , Túlio/química , Vincristina/efeitos adversos , Itérbio/química , Ítrio/química
7.
Acc Chem Res ; 53(11): 2692-2704, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33103883

RESUMO

Owing to their unique features, the past decade has witnessed rapid developments of lanthanide-activated nanoparticles for biological applications. These include highly tunable upconverting and downshifting photoluminescence when illuminated in deep tissue, excellent photostability against blinking and bleaching effects, biocompatibility through versatile surface modification, and ease of achieving multifunctionality, as well as satisfactory signal output. These attributes make lanthanide-doped nanoparticles an ideal toolbox for advanced bioimaging and next-generation therapeutics.The interest in lanthanide-doped nanoparticles for biomedical research arises from their unique optical properties in response to deep-tissue-penetrable light sources. Upon near-infrared irradiation, these nanoparticles with properly doped emitters display photon upconversion with large anti-Stokes shifts and broad-spectrum tunability from the ultraviolet to the visible. It is also possible to achieve orthogonal photoluminescence with variations in wavelength and lifetime. Coupled with surface ligands, dyes, biomolecules, or other types of functional nanomaterials, lanthanide-doped nanoparticles offer new opportunities for applications in bioimaging, advanced oncotherapy, and neuromodulation. Given the possibility of locating downshifting luminescence at "biological transmission windows", exquisite design of lanthanide-doped nanoparticles also enables deep-tissue imaging with high spatial resolution. In addition, these nanoparticles can respond to high-energy photons, such as X-rays, to trigger nonradioactive and radiative pathways, making it possible to develop high-sensitivity X-ray detectors. Precise control of paramagnetic lanthanide ions in nanocrystal lattices also provides advanced materials for high-performance magnetic resonance imaging in medical diagnostics and biomedical research. Full consideration of fundamental attributes of lanthanide-doped nanoparticles will facilitate the design of multifunctional and sensitive probes and improve diagnostic and therapeutic outcomes.In this Account, we categorize various lanthanide-activation strategies into three modes: near-infrared excitation, X-ray irradiation, and magnetic field stimulation. We introduce energy manipulations in upconverting, downshifting, and persistence luminescence in spectral and time domains and discuss how they can be applied in biological practices. We assess general design principles for lanthanide-activated nanosystems with multiple modalities of bioimaging, oncotherapy, and neuromodulation. We also review the current state-of-the-art in the field of lanthanide-based theranostic nanoplatforms, with particular emphasis on energy conversion and nano-/biointerfacing as well as emerging bioapplications. In this context, we also highlight recent advances in controlling optical properties of nanoplatforms for single- or multimodal bioimaging, stimulus-responsive phototherapy, and optogenetics. Finally, we discuss future opportunities and challenges of this exciting research field.


Assuntos
Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Animais , Meios de Contraste/química , Raios Infravermelhos , Nanopartículas/uso terapêutico , Nanopartículas/toxicidade , Neoplasias/tratamento farmacológico , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica , Microambiente Tumoral
8.
Adv Exp Med Biol ; 1293: 641-657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33398847

RESUMO

Upconversion nanoparticle-mediated optogenetics enables remote delivery of upconverted visible light from a near-infrared light source to targeted neurons or areas, with the precision of a pulse of laser light in vivo for effective deep-tissue neuromodulation. Compared to conventional optogenetic tools, upconversion nanoparticle-based optogenetic techniques are less invasive and cause reduced inflammation with minimal levels of tissue damage. In addition to the optical stimulation, this design offers simultaneously temperature recording in proximity to the stimulated area. This chapter strives to provide life science researchers with an introduction to upconversion optogenetics, starting from the fundamental concept of photon upconversion and nanoparticle fabrication to the current state-of-the-art of surface engineering and device integration for minimally invasive neuromodulation.


Assuntos
Nanopartículas , Optogenética , Raios Infravermelhos , Neurônios , Fótons
9.
Angew Chem Int Ed Engl ; 58(27): 9262-9268, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087740

RESUMO

Cargo transport along axons, a physiological process mediated by motor proteins, is essential for neuronal function and survival. A current limitation in the study of axonal transport is the lack of a robust imaging technique with a high spatiotemporal resolution to visualize and quantify the movement of motor proteins in real-time and in different depth planes. Herein, we present a dynamic imaging technique that fully exploits the characteristics of upconversion nanoparticles. This technique can be used as a microscopic probe for the quantitative in situ tracking of retrograde transport neurons with single-particle resolution in multilayered cultures. This study may provide a powerful tool to reveal dynamic neuronal activity and intra-axonal transport function as well as any associated neurodegenerative diseases resulting from mutation or impairment in the axonal transport machinery.


Assuntos
Nanopartículas Metálicas/química , Proteínas Motores Moleculares/metabolismo , Neurônios/metabolismo , Animais , Axônios/química , Axônios/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Reprogramação Celular , Dineínas/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Raios Infravermelhos , Camundongos , Microscopia de Fluorescência , Neurônios/citologia , Transporte Proteico , Ratos
10.
Angew Chem Int Ed Engl ; 56(26): 7605-7609, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28470867

RESUMO

A new class of lanthanide-doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium-enriched core-shell NaErF4 :Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+ -Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700-fold enhancement) and near-infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red-emitting upconversion nanoprobes for biological applications.

11.
Nanotechnology ; 26(38): 385702, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26335515

RESUMO

A simple strategy of Ce(3+) doping is proposed to realize multicolor tuning and predominant red emission in BaLnF5:Yb(3+)/Ho(3+) (Ln(3+) = Gd(3+), Y(3+), Yb(3+)) systems. A tunable upconversion (UC) multicolor output from green/yellow to red can be readily achieved in a fixed Yb(3+)/Ho(3+) composition by doping Ce(3+), providing an effective route for multicolor tuning widely used for various optical components. Moreover, compared with Ce(3+)-free UC nanoparticles (UCNPs), a remarkable enhancement of the red-to-green (R/G) ratio is observed by doping 30% Ce(3+), arising from the two largely promoted cross-relaxation (CR) processes between Ce(3+) and Ho(3+). UCNPs with pure red emission are selected as in vivo UC bioimaging agents, demonstrating the merits of deep penetration depth, the absence of autofluorescence and high contrast in small animal bioimaging. Moreover, such fluorescence imaging nanoprobes can also be used as contrast agents for three-dimensional (3D) x-ray bioimaging by taking advantage of the high K-edge values and x-ray absorption coefficients of Ba(2+), Gd(3+), and Ce(3+) in our designed nanoprobes. Thus, the simultaneous realization of multicolor output, highly enhanced R/G ratio, and predominant red emission makes the Ce(3+)-doped UCNPs very useful for widespread applications in optical components and bioimaging.


Assuntos
Cério/química , Imagem Molecular/métodos , Nanopartículas/análise , Nanopartículas/química , Imagem Óptica/métodos , Animais , Cor , Gadolínio/química , Hólmio/química , Camundongos Endogâmicos , Imagem Molecular/instrumentação , Nanopartículas/administração & dosagem , Dispositivos Ópticos , Imagem Óptica/instrumentação , Distribuição Tecidual , Raios X , Itérbio/química , Ítrio/química
12.
Nanotechnology ; 25(6): 065703, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24434274

RESUMO

In this study, monodispersed and high-quality hexagonal phase LaF3 nanocrystals with different shapes and sizes were synthesized by a solvothermal method using oleic acid as the stabilizing agent. The as-prepared LaF3 nanocrystals were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD), and analysis of the upconversion spectra. The TEM results reveal that the samples present high uniformity and monodispersity and are self-assembled into a two-dimensional ordered array. Moreover, the shape, size and structure of the nanocrystals can be readily tuned by adjusting the NaF content. With increasing content of NaF, the shape of the LaF3 nanocrystals changed from particle to rod and the size gradually increased. More importantly, high NaF content favors the formation of one-dimensional nanorods. High Y b(3+) and Er(3+) content is beneficial to synthesizing the hexagonal phase of NaLaF4 nanocrystals. Furthermore, the TEM results show that the shape and size of the LaF3 nanocrystals can also be tuned by doping lanthanide ions, which provides a new route for size and shape control of nanocrystals. In addition, LaF3 nanocrystals co-doped with Y b(3+)/Tm(3+) present efficient near-infrared (NIR)-NIR upconversion luminescence. More importantly, the upconversion luminescent colors can be readily tuned from blue-white to blue by adjusting the excitation power. Therefore, it is expected that these LaF3 nanocrystals with well-controlled shape, size and NIR-NIR upconversion emission have potential applications in biomedical imaging fields.


Assuntos
Fluoretos/química , Elementos da Série dos Lantanídeos/química , Lantânio/química , Nanopartículas/química , Cor , Cristalização , Diagnóstico por Imagem , Íons , Luminescência , Microscopia Eletrônica de Transmissão , Ácido Oleico/química , Óxidos/química , Solventes/química , Espectroscopia de Luz Próxima ao Infravermelho , Temperatura , Difração de Raios X
13.
J Mater Chem B ; 11(40): 9765, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37814919

RESUMO

Correction for 'Hybrid lanthanide nanoparticles as a new class of binary contrast agents for in vivo T1/T2 dual-weighted MRI and synergistic tumor diagnosis' by Zhigao Yi et al., J. Mater. Chem. B, 2016, 4, 2715-2722, https://doi.org/10.1039/C5TB02375K.

14.
Adv Mater ; 34(25): e2101895, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34145646

RESUMO

Mimicking memory processes, including encoding, storing, and retrieving information, is critical for neuromorphic computing and artificial intelligence. Synaptic behavior simulations through electronic, magnetic, or photonic devices based on metal oxides, 2D materials, molecular complex and phase change materials, represent important strategies for performing computational tasks with enhanced power efficiency. Here, a special class of memristive materials based on persistent luminescent memitters (termed as a portmanteau of "memory" and "emitter") with optical characteristics closely resembling those of biological synapses is reported. The memory process and synaptic plasticity can be successfully emulated using such memitters under precisely controlled excitation frequency, wavelength, pulse number, and power density. The experimental and theoretical data suggest that electron-coupled trap nucleation and propagation through clustering in persistent luminescent memitters can explain experience-dependent plasticity. The use of persistent luminescent memitters for multichannel image memorization that allows direct visualization of subtle changes in luminescence intensity and realization of short-term and long-term memory is also demonstrated. These findings may promote the discovery of new functional materials as artificial synapses and enhance the understanding of memory mechanisms.


Assuntos
Inteligência Artificial , Luminescência , Plasticidade Neuronal , Óxidos , Sinapses
15.
Adv Mater ; 33(49): e2102950, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34617645

RESUMO

Lanthanide-based NIR-IIb nanoprobes are ideal for in vivo imaging. However, existing NIR-IIb nanoprobes often suffer from low tumor-targeting specificity, limiting their widespread use. Here the application of bioorthogonal nanoprobes with high tumor-targeting specificity for in vivo NIR-IIb luminescence imaging and magnetic resonance imaging (MRI) is reported. These dual-modality nanoprobes can enhance NIR-IIb emission by 20-fold and MRI signal by twofold, compared with non-bioorthogonal nanoprobes in murine subcutaneous tumors. Moreover, these bioorthogonal probes enable orthotopic brain tumor imaging. Implementation of bio-orthogonal chemistry significantly reduces the nanoprobe dose and hence cytotoxicity, providing a paradigm for real-time in vivo visualization of tumors.


Assuntos
Neoplasias Encefálicas , Elementos da Série dos Lantanídeos , Nanopartículas , Animais , Imageamento por Ressonância Magnética , Camundongos , Imagem Óptica/métodos
16.
Adv Healthc Mater ; 10(7): e2002080, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33336537

RESUMO

Neoantigen-based immunotherapy is a promising treatment option for many types of cancer. However, its efficacy and abscopal effect are limited by impotent neoantigens, high treatment costs, and complications due to action of adjuvants. Here, the design and synthesis of nanovaccines are reported, based on self-adjuvanted, polymer nanoparticles with in vivo neoantigen-harvesting and molecular activating capabilities. These nanovaccines inhibit tumor growth significantly and prolong the survival of tumor-bearing mice in both colon carcinoma 26 (CT26) and B16-F10 tumor models. Mechanistic studies suggest that as-synthesized nanovaccines can promote dendritic cell maturation and accumulation expeditiously in lymph nodes, leading to the expansion of cytotoxic CD8+ T cells. Moreover, these nanovaccines elicit abscopal effects in CT26 and B16-F10 tumors without the need for adjuvants or immune checkpoint inhibitors. Combined with an anti-PD-L1 antibody, nanovaccines can evoke robust, long-term memory immune response, as evidenced by tumor growth inhibition and high survival rates (∼ 67%) over 90 days. These results highlight the potential of using self-adjuvanted nanovaccines as a simple, safe, and affordable strategy to boost neoantigen-based cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Adjuvantes Imunológicos , Animais , Linfócitos T CD8-Positivos , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico
17.
Nat Commun ; 12(1): 3704, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140483

RESUMO

Exploration of upconversion luminescence from lanthanide emitters through energy migration has profound implications for fundamental research and technology development. However, energy migration-mediated upconversion requires stringent experimental conditions, such as high power excitation and special migratory ions in the host lattice, imposing selection constraints on lanthanide emitters. Here we demonstrate photon upconversion of diverse lanthanide emitters by harnessing triplet exciton-mediated energy relay. Compared with gadolinium-based systems, this energy relay is less dependent on excitation power and enhances the emission intensity of Tb3+ by 158-fold. Mechanistic investigations reveal that emission enhancement is attributable to strong coupling between lanthanides and surface molecules, which enables fast triplet generation (<100 ps) and subsequent near-unity triplet transfer efficiency from surface ligands to lanthanides. Moreover, the energy relay approach supports long-distance energy transfer and allows upconversion modulation in microstructures. These findings enhance fundamental understanding of energy transfer at molecule-nanoparticle interfaces and open exciting avenues for developing hybrid, high-performance optical materials.

18.
Nat Nanotechnol ; 16(9): 975-980, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34127821

RESUMO

Stimulated-emission depletion (STED) microscopy has profoundly extended our horizons to the subcellular level1-3. However, it remains challenging to perform hours-long, autofluorescence-free super-resolution imaging in near-infrared (NIR) optical windows under facile continuous-wave laser depletion at low power4,5. Here we report downshifting lanthanide nanoparticles that enable background-suppressed STED imaging in all-NIR spectral bands (λexcitation = 808 nm, λdepletion = 1,064 nm and λemission = 850-900 nm), with a lateral resolution of below 20 nm and zero photobleaching. With a quasi-four-level configuration and long-lived (τ > 100 µs) metastable states, these nanoparticles support near-unity (98.8%) luminescence suppression under 19 kW cm-2 saturation intensity. The all-NIR regime enables high-contrast deep-tissue (~50 µm) imaging with approximately 70 nm spatial resolution. These lanthanide nanoprobes promise to expand the application realm of STED microscopy and pave the way towards high-resolution time-lapse investigations of cellular processes at superior spatial and temporal dimensions.


Assuntos
Elementos da Série dos Lantanídeos/química , Lasers , Nanopartículas Metálicas/química , Microscopia de Fluorescência/métodos , Luminescência , Imagem Óptica/métodos
19.
J Phys Chem Lett ; 11(16): 6704-6711, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32672973

RESUMO

Liquid water, despite its simple molecular structure, remains one of the most fascinating and complex substances. Most notably, many questions continue to exist regarding the phase transitions and anomalous properties of water, which are subtle to observe experimentally. Here, we report a sharp transition in water at 330 K unveiled through experimental measurements of the instantaneous Brownian velocity of NaYF4:Yb/Er upconversion nanoparticles in water. Our experimental investigations, corroborated by molecular dynamics simulations, elucidate a geometrical phase transition where a low-density liquid (LDL) clusters become percolated below 330 K. Around this critical temperature, we find the sizes of the LDL clusters to be similar to those of the nanoparticles, confirming the role of the upconversion nanoparticle as a powerful ruler for measuring the extensiveness of the LDL hydrogen-bond network and nanometer-scale spatial changes (20-100 nm) in liquids. Additionally, a new order parameter that unequivocally classifies water molecules into two local geometric states is introduced, providing a new tool for understanding and modeling water's many anomalous properties and phase transitions.

20.
Research (Wash D C) ; 2020: 6925296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607499

RESUMO

The World Health Organization (WHO) has declared the outbreak of 2019 novel coronavirus, known as 2019-nCoV, a pandemic, as the coronavirus has now infected over 2.6 million people globally and caused more than 185,000 fatalities as of April 23, 2020. Coronavirus disease 2019 (COVID-19) causes a respiratory illness with symptoms such as dry cough, fever, sudden loss of smell, and, in more severe cases, difficulty breathing. To date, there is no specific vaccine or treatment proven effective against this viral disease. Early and accurate diagnosis of COVID-19 is thus critical to curbing its spread and improving health outcomes. Reverse transcription-polymerase chain reaction (RT-PCR) is commonly used to detect the presence of COVID-19. Other techniques, such as recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), clustered regularly interspaced short palindromic repeats (CRISPR), and microfluidics, have allowed better disease diagnosis. Here, as part of the effort to expand screening capacity, we review advances and challenges in the rapid detection of COVID-19 by targeting nucleic acids, antigens, or antibodies. We also summarize potential treatments and vaccines against COVID-19 and discuss ongoing clinical trials of interventions to reduce viral progression.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa