Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(34)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525188

RESUMO

Magnetic relaxation in a nanoparticles system depends on the intra-particle interactions, reversal mechanism, the anisotropy field, easy axis distribution, particle volume, lattice defects, surface defects, materials composite, etc. Here we report the competing magnetic states between superparamagnetic blocking and Néel transition states in 14 nm core-shell NiO nanoparticles. A crossover temperature of 50 K was observed for both these states from the zero field cooled/field cooled magnetization curves taken at different fields. At crossover temperature, an interestingM-Hloop splitting is observed which is attributed to the slow spin relaxation. This anomalousM-Hloop splitting behaviour was found to be particle size dependent and suppressed for diameters above and below 14 nm which indicates a critical size for these competing magnetic states. Additional neutron diffraction experiments confirmed this observation. This experimental study provides a new insight for the understanding of intra-particle interactions in fine antiferromagnetic nanoparticles and obtained results are an important step towards deeper understanding of the competing/non-competing modes between superparamagnetic blocked and Néel transition states.

2.
Nanotechnology ; 31(47): 475701, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32885794

RESUMO

The effect of Fe and Mn co-doping on the magnetic properties of the antiferromagnetic (AFM) NiO nanoparticles which offer large potential for different magnetic applications have been studied. The Rietveld refinement fitting of powder x-ray diffractometry (XRD) patterns confirmed the phase formation of face-centred cubic crystal structure of NiO and average crystallite size lies in the short range of 32-38 nm. The cavity and broadband ferromagnetic resonance (FMR) measurements taken at room temperature demonstrate the smaller local magnetic inhomogeneity for 4%Mn-4%Fe co-doped NiO nanoparticles as compared to undoped, single doped and co-doped with different concentration NiO nanoparticles. The M-H loops revealed the room temperature ferromagnetism-like behaviour for higher Fe doping concentration and lower Mn doping concentration. This can be attributed to the double exchange interaction. The zero field cooled (ZFC) and field cooled (FC) dc magnetization curves showed a small surface freezing peak (at[Formula: see text] at low temperatures and a blocking peak (at [Formula: see text] at higher temperatures. For samples with 4%Mn-4%Fe and 2%Mn-6%Fe, the blocking peak was found at a relatively high temperature in comparison to other samples. This can be attributed to the presence of magnetic exchange interactions which block the magnetic spins against a thermal increase. The ZFC AC-susceptibility showed three peaks; a surface freezing peak at Tf, a blocking peak at TB peak and an anomalous peak at Tx in between [Formula: see text] and [Formula: see text], which was found to be most prominent for the 4%Mn-4%Fe co-doped nanoparticles. The neutron diffraction pattern confirmed the AFM order of the core of the 4%Mn-4%Fe co-doped nanoparticles, which indicates an AFM coupling between the Fe2+ and Mn2+ ions and the Ni2+ ions through super-exchange interaction. Therefore, the origin of TX peak can be attributed to the ferromagnetic coupling between the Fe2+ and Mn2+ ions which has a maximum strength at equal concentration. Thus, small and equal doping concentration of Fe and Mn in NiO nanoparticles increase the magnetic homogeneity which makes them attractive for magnetic applications.

3.
J Nanosci Nanotechnol ; 15(12): 10074-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682454

RESUMO

Mankind faces several global challenges such as chronic and acute hunger, global poverty, energy deficiency and environment conservation. Common biotechnologies based on batch, fluidbed and other similar processes are now extensively used for the production of a wide range of products such as antibiotics, biofuels, cultured and fermented food products. Unfortunately, these processes suffer from low efficiency, high energy demand, low controllability and rapid biocatalyst degradation by microbiological attack, and thus still are not capable of seriously addressing the global hunger and energy deficiency challenges. Moreover, sustainable future technologies require minimizing the environmental impact of toxic by-products by implementing the "life produces organic matter, organic matter sustains life" principle. Nanostructure-based biotechnology is one of the most promising approaches that can help to solve these challenges. In this work we briefly review the unique features of the carbon-based nanostructured platforms, with some attention paid to other nanomaterials. We discuss the main building blocks and processes to design and fabricate novel platforms, with a focus on dense arrays of the vertically-aligned nanostructures, mainly carbon nanotubes and graphene. Advantages and disadvantages of these systems are considered.


Assuntos
Reatores Biológicos , Biotecnologia , Nanotubos de Carbono , Nanoestruturas
4.
Nanoscale ; 10(16): 7566-7574, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29637963

RESUMO

Titanium nitride exhibits plasmonic behaviour in the visible and NIR region. Combined with a refractory nature, it can be an attractive alternate plasmonic material useful in many applications. Despite the plethora of methods to produce TiN nanoparticles, it remains challenging to generate high quality TiN nanoparticles efficiently. Here we demonstrate the transferred arc plasma technique as a viable way to synthesise TiN nanoparticles. We show here that modulating the processing conditions can control the optical properties and tune the plasmonic response rendering the application of TiN nanoparticles viable across many applications.

5.
Nanoscale ; 3(8): 3214-20, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21701743

RESUMO

Controlled synthesis of both single-walled carbon nanotube and carbon nanowire networks using the same CVD reactor and Fe/Al(2)O(3) catalyst by slightly altering the hydrogenation and temperature conditions is demonstrated. Structural, bonding and electrical characterization using SEM, TEM, Raman spectroscopy, and temperature-dependent resistivity measurements suggest that the nanotubes are of a high quality and a large fraction (well above the common 33% and possibly up to 75%) of them are metallic. On the other hand, the carbon nanowires are amorphous and semiconducting and feature a controlled sp(2)/sp(3) ratio. The growth mechanism which is based on the catalyst nanoisland analysis by AFM and takes into account the hydrogenation and temperature control effects explains the observed switch-over of the nanostructure growth modes. These results are important to achieve the ultimate control of chirality, structure, and conductivity of one-dimensional all-carbon networks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa