Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(21): 34045-34056, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859169

RESUMO

In this paper, a polarization modulated metasurface to improve the magnitude and expand the bandwidth of radar cross section (RCS) reduction is presented. Two physical mechanisms are responsible for the reflection diffusion of the proposed metasurface. One is the functionality of controlling the spatial distribution of polarization response, and the other is the capability of spanning the entire 2π phase range by making full use of the variable sizes and height difference of unit cells to achieve superwideband phase cancellation. A 10 dB monostatic RCS reduction is obtained from 3.87 to 92.89 GHz (a ratio bandwidth of 24:1) for both polarizations under normal incidence by simulation, which is identical to experimental results and theoretical analysis. The proposed method for suppressing vector fields in an extremely wide band may hold promising potentials for suppression of acoustic, electromagnetic, optical and other elastic waves.

2.
Opt Express ; 29(22): 35837-35847, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809009

RESUMO

Firstly, the electron density distribution of inductively coupled plasma (ICP) is measured by laser Thomson scattering (TS) method and the features of the ICP under the same experimental conditions are simulated by finite element method (FEM). The simulated results are in good agreement with the experimental results, which verifies the accuracy of the ICP generation simulation model. Secondly, the propagation characteristics of terahertz wave in ICP are measured by terahertz time domain spectroscopy (THz-TDS) and calculated by FEM according to the electron density distribution of ICP simulated in the first step above. The high consistency between the experimental and simulation results of terahertz wave propagation characteristics in ICP further proves the accuracy of terahertz wave transmission model in plasma and the feasibility of joint simulation with ICP generation simulation model.

3.
Opt Lett ; 45(22): 6262-6265, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33186965

RESUMO

The numerical aperture (NA) of a lens determines its focusing resolution capability and the maximum light collection or emission angle. In this Letter, an ultrathin high NA metalens operating in the microwave band is designed and demonstrated both numerically and experimentally. The proposed element is constructed by a multi-layer complementary split ring resonator, which can cover full 2π phase shift simultaneously with high transmission magnitude by varying its radius gradually. The numerical and experimental results reveal that the designed ultrathin (thickness is only ∼0.23λ) metalens can focus normal incident microwave efficiently to a spot of full width at half-maximum (FWHM) as small as ∼0.54λ with a corresponding high NA exceeding 0.9. Besides, the high NA metalens also possesses a relatively large focusing efficiency with a peak 48% within considered broad frequency range from 7.5 to 10 GHz. The performances of the presented metalens can be comparable or even superior to nowadays high-quality optical metalenses and represent an important step to develop a high-performance metalens in low spectrum. Besides, it can greatly facilitate the development of some novel miniaturized devices like a high-gain low profile scanning antenna, an ultra-compact retroreflector, and cloaks.

4.
Sci Rep ; 14(1): 6147, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480807

RESUMO

Random media pose limitations on the imaging capability of photoelectric detection devices. Currently, imaging techniques employed through random media primarily operate within the laser wavelength range, leaving the imaging potential of terahertz waves unexplored. In this study, we present an approach for terahertz bistatic three-dimensional imaging (TBTCI) of hidden objects through random media. By deducing the field distribution of bistatic terahertz time-domain spectroscopy system, and proposing an explicit point spread function of the random media, we conducted three-dimensional imaging of hidden objects obscured by the random media. Our proposed method exhibits promising applications in imaging scenarios with millimeter-wave radar, including non-invasive testing and biological imaging.

5.
J Opt Soc Am A Opt Image Sci Vis ; 30(4): 663-70, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23595326

RESUMO

An accurate creeping ray-tracing algorithm is presented in this paper to determine the tracks of creeping waves (or creeping rays) on arbitrarily shaped free-form parametric surfaces [nonuniform rational B-splines (NURBS) surfaces]. The main challenge in calculating the surface diffracted fields on NURBS surfaces is due to the difficulty in determining the geodesic paths along which the creeping rays propagate. On one single parametric surface patch, the geodesic paths need to be computed by solving the geodesic equations numerically. Furthermore, realistic objects are generally modeled as the union of several connected NURBS patches. Due to the discontinuity of the parameter between the patches, it is more complicated to compute geodesic paths on several connected patches than on one single patch. Thus, a creeping ray-tracing algorithm is presented in this paper to compute the geodesic paths of creeping rays on the complex objects that are modeled as the combination of several NURBS surface patches. In the algorithm, the creeping ray tracing on each surface patch is performed by solving the geodesic equations with a Runge-Kutta method. When the creeping ray propagates from one patch to another, a transition method is developed to handle the transition of the creeping ray tracing across the border between the patches. This creeping ray-tracing algorithm can meet practical requirements because it can be applied to the objects with complex shapes. The algorithm can also extend the applicability of NURBS for electromagnetic and optical applications. The validity and usefulness of the algorithm can be verified from the numerical results.

6.
Nanomaterials (Basel) ; 13(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37049372

RESUMO

A terahertz flexible metamaterial quarter-wave plate (QWP) is designed and fabricated using polyimide as the substrate in this paper, with a 3 dB axial ratio bandwidth of 0.51 THz and high polarization conversion efficiency and transmittance. The effect of the incidence angle on the polarization conversion performance of the QWP is discussed by measuring the transmissions at multiple incidence angles. The blocking effect of this QWP combined with a polarizer on the backward reflection of terahertz waves is investigated by terahertz time-domain spectral transmission experiments. By adjusting the angle of the QWP and polarizer with respect to the incident light in the optical path, a blocking efficiency of 20 dB can be achieved at a 20° incidence angle, with a bandwidth of 0.25 THz, a maximum blocking efficiency of 58 dB at 1.73 THz, and an insertion loss of only 1.4 dB. Flexible terahertz metamaterial QWPs and polarizers can effectively block harmful reflected waves in terahertz communication and other systems. They have the advantages of a simple structure, ultra-thinness and flexibility, easy integration, no external magnetic field, and no low-temperature and other environmental requirements, thus having broad application prospects for terahertz on-chip integrated systems.

7.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35683660

RESUMO

Surface plasmon polaritons (SPPs) on the graphene metasurfaces (GSPs) are crucial to develop a series of novel functional devices that can merge the well-established plasmonics and novel nanomaterials. Dispersion theory on GSPs is an important aspect, which can provide a basic understanding of propagating waves and further guidance for potential applications based on graphene metamaterials. In this paper, the dispersion theory and its modal characteristics of GSPs on double-layer graphene metasurfaces consisting of the same upper and lower graphene micro-ribbon arrays deposited on the dielectric medium are presented. In order to obtain its dispersion expressions of GSP mode on the structure, an analytical approach is provided by directly solving the Maxwell's equations in each region and then applying periodical conductivity boundary onto the double interfaces. The obtained dispersion expressions show that GSPs split into two newly symmetric and antisymmetric modes compared to that on the single graphene metasurface. Further, the resultant dispersion relation and its propagating properties as a function of some important physical parameters, such as spacer, ribbon width, and substrate, are treated and investigated in the Terahertz band, signifying great potentials in constructing various novel graphene-based plasmonic devices, such as deeply sub-wavelength waveguides, lenses, sensors, emitters, etc.

8.
Materials (Basel) ; 15(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36143764

RESUMO

In this paper, a low-profile, double-layer absorber with ultra-broadband absorption and large-angle stability is proposed. In order to improve the angular stability, the square ring with concave-convex deformation is designed. It can expand the current path to realize the miniaturization of the absorber, which decreases the influence of oblique incident on absorption. The equivalent circuit model provides detailed resonance and admittance analysis, showing the existence of three resonances working together to achieve broadband absorption. The simulated results illustrate that the designed unit can achieve above 80% absorption within 2.09-18.1 GHz. The angular stability is up to 50° under TE/TM polarization with a period of 0.07 λL (the wavelength of the lowest operating frequency). The 300 mm × 300 mm prototype absorbers were fabricated for demonstration, with a total thickness of 0.096 λL. The measurement results are consistent with the simulated results, which shows that the designed absorber unit can achieve ultra-broadband and large-angle absorption. The performance of devices can be widely applied in infrared detection, radiation refrigeration, and stealth technology.

9.
Sci Rep ; 12(1): 4655, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304546

RESUMO

Based on laser Thomson scattering (TS) measurements and finite element method (FEM) simulations of electron density in inductively coupled plasma (ICP), the simulated local pressure calibration curves of ICP generator are obtained by comparing the experimental and simulated electron density distributions and maxima. The equation coefficients of theoretical model associated with the ICP generator experimental system can be obtained by fitting the simulation curve with the least square method, and the theoretical pressure calibration curves under different absorbed powers can be further obtained. Combined with the vacuum gauge measurements, both the simulated and theoretical pressure calibration curves can give the true local pressure in the plasma. The results of the local pressure calibration at the different absorbed powers show that the density gradient from the vacuum gauge sensor to the center of the coil in ICP generator cavity becomes larger with the increase of electron density, resulting in a larger gap between the measured value and the pressure calibration value. This calibration method helps to grasp the local pressure of ICP as an external control factor and helps to study the physicochemical mechanism of ICP in order to achieve higher performance in ICP etching, material modification, etc.

10.
Opt Express ; 19(24): 23751-69, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22109401

RESUMO

a numerical matching method (NMM) based on the framework of the uniform geometrical theory of diffraction (UTD) is proposed to build the spectral functions for computing the diffraction field by anisotropic impedance wedge at an arbitrary skew incidence. The NMM starts from the coupled integral equations before they are converted into the coupled difference equations as the classic Maliuzhinets methods. Then, the spectral function in the Sommerfeld integral representation of the longitudinal components of the EM field is expanded by a series about the spectrum and the skew incident angle with unknown coefficients. With respect to the oblique incident angle based on normal to the edge incidence or grazing to the edge incidence, the spectral function is derived numerically by solving a system of algebraic equations constructed from the coupled integral equations, after choosing the numerical matching regions on the wedge faces and setting a Sommerfeld numerical integration path. On the basis of the sampled incidences, the asymptotic waveform evaluation (AWE) technique is employed to deduce the spectral function at any other skew incidence in the whole angle space (0°-90°) rapidly. Finally, the UTD solutions are provided far beyond the applicability of the perturbation approach and the numerical examples provide a uniform behavior of the field with respect to the observation angle.


Assuntos
Algoritmos , Modelos Teóricos , Refratometria/instrumentação , Anisotropia , Simulação por Computador , Luz , Espalhamento de Radiação
11.
PLoS One ; 16(6): e0253743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34170926

RESUMO

The present paper deals with a new efficient shooting and bouncing ray (SBR) method based on OptiX and normal vectors correction. The basic idea is to make full use of the computing resources of the RTX series graphics cards. For ray tracing, the algorithm uses OptiX to invoke the built-in RT Cores of hardware. Thus, a fast intersection test can be implemented. To reduce the error of ray tracing caused by the facetted surface characterizing the curved surface, the direction of the reflected ray is corrected by normal vectors correction. Additionally, multiple GPU cores are invoked to accelerate the calculation of far-field integration of millions of ray tubes, which can improve the efficiency of the algorithm while reducing the data transmission time of heterogeneous devices. Simulation results show that the ray path after normal vectors correction is consistent with the theoretical results, and the algorithm can predict the RCS of arbitrary facetted geometries, which is 60 times faster than the SBR method based on kd-tree.


Assuntos
Algoritmos , Modelos Teóricos
12.
Sci Rep ; 10(1): 18243, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106533

RESUMO

The bound states in the continuum (BICs) have been investigated by simulating the optical reflectivity of a tri-layer photonic crystal slab. We found that optical BICs can occur in a class of photonic crystal systems with [Formula: see text], [Formula: see text] or [Formula: see text] rotational symmetries, which are constructed by three identical photonic crystal slabs. By applying the two mode coupled model, we obtain the reflectivity formula to fit the numerical data and evaluate the lifetime of radiation decay. In vicinity of BIC, the lifetime diverges as a power law form, when approaching the BIC point. The infinity life time of [Formula: see text] in the tri-layer structure indicate that it is a true BIC. The [Formula: see text] occurs robustly in tri-layer structures, but the resonance frequency of the BICs is dependent on the permittivity of slab, air-hole size and hole shape.

13.
Sci Rep ; 8(1): 8182, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802322

RESUMO

In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

14.
Sci Rep ; 6: 26988, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27245435

RESUMO

We have theoretically investigated the reflectivity spectrums of single- and double-layer photonic crystal slabs and the dielectric multilayer stack. It is shown that light can be perfectly confined in a single-layer photonic crystal slab at a given incident angle by changing the thickness, permittivity or hole radius of the structure. With a tunable double-layer photonic crystal slab, we demonstrate that the occurrence of tunable bound states in the continuum is dependent on the spacing between two slabs. Moreover, by analytically investigating the Drude lossless multilayer stack model, the spacing dependence of bound states in the continuum is characterized as the phase matching condition that illuminates these states can occur at any nonzero incident angles by adjusting the spacing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa