Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Hum Mol Genet ; 25(5): 837-52, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26604145

RESUMO

Huntington's disease (HD) is a progressive neurological disorder whose non-motor symptoms include sleep disturbances. Whether sleep and activity abnormalities are primary molecular disruptions of mutant Huntingtin (mutHtt) expression or result from neurodegeneration is unclear. Here, we report Drosophila models of HD exhibit sleep and activity disruptions very early in adulthood, as soon as sleep patterns have developed. Pan-neuronal expression of full-length or N-terminally truncated mutHtt recapitulates sleep phenotypes of HD patients: impaired sleep initiation, fragmented and diminished sleep, and nighttime hyperactivity. Sleep deprivation of HD model flies results in exacerbated sleep deficits, indicating that homeostatic regulation of sleep is impaired. Elevated PKA/CREB activity in healthy flies produces patterns of sleep and activity similar to those in our HD models. We were curious whether aberrations in PKA/CREB signaling were responsible for our early-onset sleep/activity phenotypes. Decreasing signaling through the cAMP/PKA pathway suppresses mutHtt-induced developmental lethality. Genetically reducing PKA abolishes sleep/activity deficits in HD model flies, restores the homeostatic response and extends median lifespan. In vivo reporters, however, show dCREB2 activity is unchanged, or decreased when sleep/activity patterns are abnormal, suggesting dissociation of PKA and dCREB2 occurs early in pathogenesis. Collectively, our data suggest that sleep defects may reflect a primary pathological process in HD, and that measurements of sleep and cAMP/PKA could be prodromal indicators of disease, and serve as therapeutic targets for intervention.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Drosophila melanogaster/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Transdução de Sinais , Transtornos do Sono-Vigília/genética , Idade de Início , Animais , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sono/genética , Transtornos do Sono-Vigília/metabolismo , Transtornos do Sono-Vigília/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Neurobiol Learn Mem ; 153(Pt A): 2-12, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29474956

RESUMO

Circadian regulation is a conserved phenomenon across the animal kingdom, and its disruption can have severe behavioral and physiological consequences. Core circadian clock proteins are likewise well conserved from Drosophila to humans. While the molecular clock interactions that regulate circadian rhythms have been extensively described, additional roles for clock genes during complex behaviors are less understood. Here, we show that mutations in the clock gene period result in differential time-of-day effects on acquisition and long-term memory of aversive olfactory conditioning. Sleep is also altered in period mutants: while its overall levels don't correlate with memory, sleep plasticity in different genotypes correlates with immediate performance after training. We further describe distinct anatomical bases for Period function by manipulating Period activity in restricted brain cells and testing the effects on specific aspects of memory and sleep. In the null mutant background, different features of sleep and memory are affected when we reintroduce a form of the period gene in glia, lateral neurons, and the fan-shaped body. Our results indicate that the role of the clock gene period may be separable in specific aspects of sleep or memory; further studies into the molecular mechanisms of these processes suggest independent neural circuits and molecular cascades that mediate connections between the distinct phenomena.


Assuntos
Encéfalo/fisiologia , Relógios Circadianos , Proteínas de Drosophila/fisiologia , Memória/fisiologia , Proteínas Circadianas Period/fisiologia , Sono , Animais , Relógios Circadianos/genética , Drosophila/genética , Drosophila/fisiologia , Proteínas de Drosophila/genética , Genótipo , Aprendizagem/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Proteínas Circadianas Period/genética , Sono/genética , Fatores de Tempo
3.
Neurobiol Learn Mem ; 118: 80-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25460038

RESUMO

CREB (cAMP response element-binding protein) is an evolutionarily conserved transcription factor, playing key roles in synaptic plasticity, intrinsic excitability and long-term memory (LTM) formation. The Drosophila homologue of mammalian CREB, dCREB2, is also important for LTM. However, the spatio-temporal nature of dCREB2 activity during memory consolidation is poorly understood. Using an in vivo reporter system, we examined dCREB2 activity continuously in specific brain regions during LTM processing. Two brain regions that have been shown to be important for Drosophila LTM are the ellipsoid body (EB) and the mushroom body (MB). We found that dCREB2 reporter activity is persistently elevated in EB R2/R4m neurons, but not neighboring R3/R4d neurons, following LTM-inducing training. In multiple subsets of MB neurons, dCREB2 reporter activity is suppressed immediately following LTM-specific training, and elevated during late windows. In addition, we observed heterogeneous responses across different subsets of neurons in MB αß lobe during LTM processing. All of these changes suggest that dCREB2 functions in both the EB and MB for LTM formation, and that this activity contributes to the process of systems consolidation.


Assuntos
Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Memória de Longo Prazo/fisiologia , Neurônios/metabolismo , Transativadores/metabolismo , Animais , Condicionamento Clássico/fisiologia , Drosophila , Técnicas In Vitro , Corpos Pedunculados/metabolismo , Odorantes , Percepção Olfatória/fisiologia
4.
Nat Rev Neurosci ; 11(8): 577-88, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20648063

RESUMO

There has been considerable progress in elucidating the molecular mechanisms that contribute to memory formation and the generation of circadian rhythms. However, it is not well understood how these two processes interact to generate long-term memory. Recent studies in both vertebrate and invertebrate models have shown time-of-day effects on neurophysiology and memory formation, and have revealed a possible role for cycling molecules in memory persistence. Together, these studies suggest that common mechanisms underlie circadian rhythmicity and long-term memory formation.


Assuntos
Ritmo Circadiano/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Simulação de Dinâmica Molecular , Animais , Humanos , Potenciação de Longa Duração/fisiologia , Retenção Psicológica/fisiologia
5.
Cell Mol Neurobiol ; 35(6): 763-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25791355

RESUMO

Notch receptor signaling is evolutionarily conserved and well known for its roles in animal development. Many studies in Drosophila have shown that Notch also performs important functions in memory formation in adult flies. An intriguing observation is that increased expression of the full-length Notch receptor (Nfull) triggers long-term memory (LTM) formation even after very weak training (single training). Canonical Notch signaling is mediated by Notch intracellular domain (NICD), but it is not known whether increased expression of NICD recapitulates the LTM enhancement induced by increased Nfull expression. Here, we report that increased NICD expression either has no impact on LTM formation or suppresses it. Furthermore, it either has no impact or decreases both the levels and activity of cAMP response element binding protein, a key factor supporting LTM. These results indicate that NICD signaling is not sufficient to explain Nfull-induced LTM enhancement. Our findings may also shed light on the molecular mechanisms of memory loss in neurological diseases associated with increased NICD expression and canonical Notch signaling.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Memória de Longo Prazo/fisiologia , Receptores Notch/fisiologia , Animais , Animais Geneticamente Modificados , Condicionamento Psicológico/fisiologia , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expressão Gênica , Estrutura Terciária de Proteína/fisiologia , Receptores Notch/química , Receptores Notch/genética , Transdução de Sinais/genética , Olfato/genética
6.
J Neurosci ; 33(31): 12825-34, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23904617

RESUMO

Notch is a cell surface receptor that is known to regulate developmental processes by establishing physical contact between neighboring cells. Many recent studies show that it also plays an important role in the formation of long-term memory (LTM) in adults, implying that memory formation requires regulation at the level of cell-cell contacts among brain cells. Neither the target of Notch activity in LTM formation nor the underlying mechanism of regulation is known. We report here results of our studies in adult Drosophila melanogaster showing that Notch regulates dCrebB-17A, the CREB protein. CREB is a transcriptional factor that is pivotal for intrinsic and synaptic plasticity involved in LTM formation. Notch in conjunction with PKC activity upregulates the level of a hyperphosphorylated form of CREB (hyper-PO4 CREB) and triggers its ultradian oscillation, both of which are linked to LTM formation. One of the sites that is phosphorylated in hyper-PO4 CREB is serine 231, which is the functional equivalent of mammalian CREB serine 133, the phosphorylation of which is an important regulator of CREB functions. Our data suggest the model that Notch and PKC activities generate a cyclical accumulation of cytoplasmic hyper-PO4 CREB that is a precursor for generating the nuclear CREB isoforms. Cyclical accumulation of CREB might be important for repetitive aspects of LTM formation, such as memory consolidation. Because Notch, PKC, and CREB have been implicated in many neurodegenerative diseases (e.g., Alzheimer's disease), our data might also shed some light on memory loss and dementia.


Assuntos
Ciclos de Atividade/fisiologia , Encéfalo/metabolismo , Condicionamento Clássico/fisiologia , Proteínas de Drosophila/metabolismo , Memória de Longo Prazo/fisiologia , Receptores Notch/metabolismo , Ciclos de Atividade/efeitos dos fármacos , Ciclos de Atividade/genética , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Proteína de Ligação a CREB/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Masculino , Mutação/genética , Ésteres de Forbol/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C/metabolismo , Receptores Notch/genética , Temperatura , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
7.
J Neurosci ; 33(17): 7475-87, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616553

RESUMO

CREB-responsive transcription has an important role in adaptive responses in all cells and tissue. In the nervous system, it has an essential and well established role in long-term memory formation throughout a diverse set of organisms. Activation of this transcription factor correlates with long-term memory formation and disruption of its activity interferes with this process. Most convincingly, augmenting CREB activity in a number of different systems enhances memory formation. In Drosophila, a sequence rearrangement in the original transgene used to enhance memory formation has been a source of confusion. This rearrangement prematurely terminates translation of the full-length protein, leaving the identity of the "enhancing molecule" unclear. In this report, we show that a naturally occurring, downstream, in-frame initiation codon is used to make a dCREB2 protein off of both transgenic and chromosomal substrates. This protein is a transcriptional activator and is responsible for memory enhancement. A number of parameters can affect enhancement, including the short-lived activity of the activator protein, and the time-of-day when induction and behavioral training occur. Our results reaffirm that overexpression of a dCREB2 activator can enhance memory formation and illustrate the complexity of this behavioral enhancement.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Proteínas de Drosophila/fisiologia , Memória de Longo Prazo/fisiologia , Transativadores/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Drosophila , Proteínas de Drosophila/genética , Dados de Sequência Molecular , Transativadores/genética
8.
Neurobiol Learn Mem ; 106: 258-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24076014

RESUMO

The transcription factor CREB is an important regulator of many adaptive processes in neurons, including sleep, cellular homeostasis, and memory formation. The Drosophila dCREB2 family includes multiple protein isoforms generated from a single gene. Overexpression of an activator or blocker isoform has been shown to enhance or block memory formation, but the molecular mechanisms underlying these phenomena remain unclear. In the present study, we generate isoform-specific antibodies and new transgenic flies to track and manipulate the activity of different dCREB2 isoforms during memory formation. We find that nuclear accumulation of a dCREB2 activator-related species, p35+, is dynamically regulated during memory formation. Furthermore, various dCREB2 genetic manipulations that enhance or block memory formation correspondingly increase or decrease p35+ levels in the nucleus. Finally, we show that overexpression of S6K can enhance memory formation and increase p35+ nuclear abundance. Taken together, these results suggest that regulation of dCREB2 localization may be a key molecular convergence point in the coordinated host of events that lead to memory formation.


Assuntos
Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Memória/fisiologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Núcleo Celular/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Isoformas de Proteínas/metabolismo
9.
Front Syst Neurosci ; 17: 1129152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034015

RESUMO

The role of the circadian system in memory formation is an important question in neurobiology. Despite this hypothesis being intuitively appealing, the existing data is confusing. Recent work in Drosophila has helped to clarify certain aspects of the problem, but the emerging sense is that the likely mechanisms are more complex than originally conceptualized. In this report, we identify a post-training window of time (during consolidation) when the circadian clock and its components are involved in memory formation. In the broader context, our data suggest that circadian biology might have multiple roles during memory formation. Testing for its roles at multiple timepoints, and in different cells, will be necessary to resolve some of the conflicting data.

10.
PLoS Biol ; 6(12): 2698-706, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19108606

RESUMO

How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta), an autonomously active atypical protein kinase C (PKC) isoform critical for the maintenance of long-term potentiation (LTP). PKMzeta maintains aversively conditioned associations, but what general form of information the kinase encodes in the brain is unknown. We first confirmed the specificity of the action of zeta inhibitory peptide (ZIP) by disrupting long-term memory for active place avoidance with chelerythrine, a second inhibitor of PKMzeta activity. We then examined, using ZIP, the effect of PKMzeta inhibition in dorsal hippocampus (DH) and basolateral amygdala (BLA) on retention of 1-d-old information acquired in the radial arm maze, water maze, inhibitory avoidance, and contextual and cued fear conditioning paradigms. In the DH, PKMzeta inhibition selectively disrupted retention of information for spatial reference, but not spatial working memory in the radial arm maze, and precise, but not coarse spatial information in the water maze. Thus retention of accurate spatial, but not procedural and contextual information required PKMzeta activity. Similarly, PKMzeta inhibition in the hippocampus did not affect contextual information after fear conditioning. In contrast, PKMzeta inhibition in the BLA impaired retention of classical conditioned stimulus-unconditioned stimulus (CS-US) associations for both contextual and auditory fear, as well as instrumentally conditioned inhibitory avoidance. PKMzeta inhibition had no effect on postshock freezing, indicating fear expression mediated by the BLA remained intact. Thus, persistent PKMzeta activity is a general mechanism for both appetitively and aversively motivated retention of specific, accurate learned information, but is not required for processing contextual, imprecise, or procedural information.


Assuntos
Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Proteína Quinase C/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Benzofenantridinas/farmacologia , Condicionamento Clássico , Medo , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração , Masculino , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Ratos
11.
Proc Natl Acad Sci U S A ; 105(38): 14644-9, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18780789

RESUMO

The formation of long-term memory is believed to require translational control of localized mRNAs. In mammals, dendritic mRNAs are maintained in a repressed state and are activated upon repetitive stimulation. Several regulatory proteins required for translational control in early development are thought to be required for memory formation, suggesting similar molecular mechanisms. Here, using Drosophila, we identify the enzyme responsible for poly(A) elongation in the brain and demonstrate that its activity is required specifically for long-term memory. These findings provide strong evidence that cytoplasmic polyadenylation is critical for memory formation, and that GLD2 is the enzyme responsible.


Assuntos
Drosophila melanogaster/enzimologia , Memória/fisiologia , Polinucleotídeo Adenililtransferase/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Citoplasma/enzimologia , Proteínas de Drosophila/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios Motores/enzimologia , Neuritos/enzimologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
12.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34117750

RESUMO

Neurodegenerative diseases such as Alzheimer's and Parkinson's currently affect ∼25 million people worldwide. The global incidence of traumatic brain injury (TBI) is estimated at ∼70 million/year. Both neurodegenerative diseases and TBI remain without effective treatments. We are utilizing adult Drosophila melanogaster to investigate the mechanisms of brain regeneration with the long-term goal of identifying targets for neural regenerative therapies. We specifically focused on neurogenesis, i.e., the generation of new cells, as opposed to the regrowth of specific subcellular structures such as axons. Like mammals, Drosophila have few proliferating cells in the adult brain. Nonetheless, within 24 hours of a penetrating traumatic brain injury (PTBI) to the central brain, there is a significant increase in the number of proliferating cells. We subsequently detect both new glia and new neurons and the formation of new axon tracts that target appropriate brain regions. Glial cells divide rapidly upon injury to give rise to new glial cells. Other cells near the injury site upregulate neural progenitor genes including asense and deadpan and later give rise to the new neurons. Locomotor abnormalities observed after PTBI are reversed within 2 weeks of injury, supporting the idea that there is functional recovery. Together, these data indicate that adult Drosophila brains are capable of neuronal repair. We anticipate that this paradigm will facilitate the dissection of the mechanisms of neural regeneration and that these processes will be relevant to human brain repair.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Animais , Axônios/metabolismo , Axônios/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Lesões Encefálicas Traumáticas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neuroglia/citologia , Neuroglia/metabolismo , Regeneração
13.
PLoS Biol ; 5(10): e265, 2007 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17941717

RESUMO

Tolerance to drugs that affect neural activity is mediated, in part, by adaptive mechanisms that attempt to restore normal neural excitability. Changes in the expression of ion channel genes are thought to play an important role in these neural adaptations. The slo gene encodes the pore-forming subunit of BK-type Ca(2+)-activated K(+) channels, which regulate many aspects of neural activity. Given that induction of slo gene expression plays an important role in the acquisition of tolerance to sedating drugs, we investigated the molecular mechanism of gene induction. Using chromatin immunoprecipitation followed by real-time PCR, we show that a single brief sedation with the anesthetic benzyl alcohol generates a spatiotemporal pattern of histone H4 acetylation across the slo promoter region. Inducing histone acetylation with a histone deacetylase inhibitor yields a similar pattern of changes in histone acetylation, up-regulates slo expression, and phenocopies tolerance in a slo-dependent manner. The cAMP response element binding protein (CREB) is an important transcription factor mediating experience-based neuroadaptations. The slo promoter region contains putative binding sites for the CREB transcription factor. Chromatin immunoprecipitation assays show that benzyl alcohol sedation enhances CREB binding within the slo promoter region. Furthermore, activation of a CREB dominant-negative transgene blocks benzyl alcohol-induced changes in histone acetylation within the slo promoter region, slo induction, and behavioral tolerance caused by benzyl alcohol sedation. These findings provide unique evidence that links molecular epigenetic histone modifications and transcriptional induction of an ion channel gene with a single behavioral event.


Assuntos
Anestésicos Locais/farmacologia , Álcool Benzílico/farmacologia , Tolerância a Medicamentos/fisiologia , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Acetilação , Animais , Sequência de Bases , Butiratos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Drosophila melanogaster , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Dados de Sequência Molecular , Canais de Potássio/genética , Canais de Potássio/metabolismo , Sequências Reguladoras de Ácido Nucleico , Alinhamento de Sequência , Solventes/farmacologia , Ativação Transcricional , Transgenes
14.
Neurosci Biobehav Rev ; 32(8): 1533-43, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18601949

RESUMO

Cyclic AMP (cAMP) is a second messenger involved in many processes including mnemonic processing and anxiety. Memory deficits and anxiety are noted in the phenotype of fragile X (FX), the most common heritable cause of mental retardation and autism. Here we review reported observations of altered cAMP cascade function in FX and autism. Cyclic AMP is a potentially useful biochemical marker to distinguish autism comorbid with FX from autism per se and the cAMP cascade may be a viable therapeutic target for both FX and autism.


Assuntos
Transtorno Autístico/metabolismo , AMP Cíclico/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Fenótipo , Animais , Ansiedade/metabolismo , Transtorno Autístico/complicações , Transtorno Autístico/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Humanos , Memória/fisiologia , Modelos Biológicos
15.
Nat Neurosci ; 5(4): 316-24, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11914720

RESUMO

Synaptic stimulation activates signal transduction pathways, producing persistently active protein kinases. PKMzeta is a truncated, persistently active isoform of atypical protein kinase C-zeta (aPKCzeta), which lacks the N-terminal pseudosubstrate regulatory domain. Using a Pavlovian olfactory learning task in Drosophila, we found that induction of the mouse aPKMzeta (MaPKMzeta) transgene enhanced memory. The enhancement required persistent kinase activity and was temporally specific, with optimal induction at 30 minutes after training. Induction also enhanced memory after massed training and corrected the memory defect of radish mutants, but did not improve memory produced by spaced training. The 'M' isoform of the Drosophila homolog of MaPKCzeta (DaPKM) was present and active in fly heads. Chelerythrine, an inhibitor of PKMzeta, and the induction of a dominant-negative MaPKMzeta transgene inhibited memory without affecting learning. Finally, induction of DaPKM after training also enhanced memory. These results show that atypical PKM is sufficient to enhance memory in Drosophila and suggest that it is necessary for normal memory maintenance.


Assuntos
Drosophila melanogaster/fisiologia , Memória/fisiologia , Proteína Quinase C/metabolismo , Alcaloides , Animais , Animais Geneticamente Modificados , Aprendizagem da Esquiva , Benzofenantridinas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Inibidores Enzimáticos/farmacologia , Feminino , Cabeça/fisiologia , Temperatura Alta , Masculino , Fenantridinas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Olfato/fisiologia , Extratos de Tecidos/química , Extratos de Tecidos/metabolismo
16.
Sci Adv ; 3(4): e1602663, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28435883

RESUMO

Sleep is found widely in the animal kingdom. Despite this, few conserved molecular pathways that govern sleep across phyla have been described. The mammalian brain-type fatty acid binding protein (Fabp7) is expressed in astrocytes, and its mRNA oscillates in tandem with the sleep-wake cycle. However, the role of FABP7 in regulating sleep remains poorly understood. We found that the missense mutation FABP7.T61M is associated with fragmented sleep in humans. This phenotype was recapitulated in mice and fruitflies bearing similar mutations: Fabp7-deficient mice and transgenic flies that express the FABP7.T61M missense mutation in astrocytes also show fragmented sleep. These results provide novel evidence for a distinct molecular pathway linking lipid-signaling cascades within astrocytes in sleep regulation among phylogenetically disparate species.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/biossíntese , Transdução de Sinais/fisiologia , Sono/fisiologia , Proteínas Supressoras de Tumor/biossíntese , Animais , Astrócitos/citologia , Relógios Biológicos/fisiologia , Encéfalo/citologia , Drosophila melanogaster , Proteína 7 de Ligação a Ácidos Graxos/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Proteínas Supressoras de Tumor/genética
17.
J Biol Rhythms ; 18(1): 12-25, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12568241

RESUMO

The central clock is generally thought to provide timing information for rest/activity but not to otherwise participate in regulation of these states. To test the hypothesis that genes that are components of the molecular clock also regulate rest, the authors quantified the duration and intensity of consolidated rest and activity for the four viable Drosophila mutations of the central clock that lead to arrhythmic locomotor behavior and for the pdf mutant that lacks pigment-dispersing factor, an output neuropeptide. Only the cycle (cyc01) and Clock (Clk(Jrk)) mutants had abnormalities that mapped to the mutant locus, namely, decreased consolidated rest and grossly extended periods of activity. All mutants with the exception of the cyc01 fly exhibited a qualitatively normal compensatory rebound after rest deprivation. This abnormal response in cyc01 was sexually dimorphic, being reduced or absent in males and exaggerated in females. Finally, the cyc01 mutation shortened the life span of male flies. These data indicate that cycle regulates rest and life span in male Drosophila.


Assuntos
Drosophila melanogaster/fisiologia , Longevidade/genética , Descanso/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição ARNTL , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Relógios Biológicos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Escuridão , Drosophila melanogaster/genética , Feminino , Luz , Masculino , Atividade Motora/genética , Fenótipo , Caracteres Sexuais , Privação do Sono , Sobrevida
18.
Front Syst Neurosci ; 8: 43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24744705

RESUMO

Many biological phenomena oscillate under the control of the circadian system, exhibiting peaks and troughs of activity across the day/night cycle. In most animal models, memory formation also exhibits this property, but the underlying neuronal and molecular mechanisms remain unclear. The dCREB2 transcription factor shows circadian regulated oscillations in its activity, and has been shown to be important for both circadian biology and memory formation. We show that the time-of-day (TOD) of behavioral training affects Drosophila memory formation. dCREB2 exhibits complex changes in protein levels across the daytime and nighttime, and these changes in protein abundance are likely to contribute to oscillations in dCREB2 activity and TOD effects on memory formation.

19.
Front Cell Neurosci ; 7: 222, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312012

RESUMO

Notch is a cell surface receptor that is well known to mediate inter-cellular communication during animal development. Data in the field indicate that it is also involved in the formation of long-term memory (LTM) in the fully developed adults and in memory loss upon neurodegeneration. Our studies in the model organism Drosophila reveal that a non-canonical Notch-protein kinase C activity that plays critical roles in embryonic development also regulates cyclic-AMP response element binding protein during LTM formation in adults. Here we present a perspective on how the various known features of Notch function relate to LTM formation and how they might interface with elements of Wingless/Wnt signaling in this process.

20.
Front Cell Neurosci ; 7: 77, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23754978

RESUMO

Fragile X syndrome (FXS) is a debilitating genetic disorder with no cure and few therapeutic options. Excessive signaling through metabotropic glutamate receptor 5 in FXS leads to increased translation of numerous synaptic proteins and exaggerated long-term depression. Two of the overexpressed proteins are amyloid-beta protein precursor (APP) and its metabolite amyloid-beta, which have been well-studied in Alzheimer's disease (AD). Here we discus the possibility that pharmaceuticals under study for the modulation of these proteins in AD might be viable therapeutic strategies for FXS. Specifically, a recently identified acetyltransferase inhibitor that reduces the levels and activity of ß-site APP cleaving enzyme (BACE-1) has strong potential to attenuate BACE-1 activity and maintain homeostatic levels APP catabolites in FXS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa