RESUMO
Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer , accounting for approximately 85% of lung cancers. For more than 40 years, platinum (Pt)-based drugs are still one of the most widely used anticancer drugs even in the era of precision medicine and immunotherapy. However, the clinical limitations of Pt-based drugs, such as serious side effects and drug resistance, have not been well solved. This study constructs a new albumin-encapsulated Pt(IV) nanodrug (HSA@Pt(IV)) based on the Pt(IV) drug and nanodelivery system. The characterization of nanodrug and biological experiments demonstrate its excellent drug delivery and antitumor effects. The multi-omics analysis of the transcriptome and the ionome reveals that nanodrug can activate ferroptosis by affecting intracellular iron homeostasis in NSCLC. This study provides experimental evidence to suggest the potential of HSA@Pt(IV) as a nanodrug with clinical application.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Nanopartículas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Albuminas , Ferro/farmacologia , Linhagem Celular TumoralRESUMO
BACKGROUND: Radiotherapy (RT) is the standard treatment for nasopharyngeal carcinoma (NPC). However, due to individual differences in radiosensitivity, biomarkers are needed to tailored radiotherapy to cancer patients. However, comprehensive genome-wide radiogenomic studies on them are still lacking. The aim of this study was to identify genetic variants associated with radiotherapy response in patients with NPC. METHODS: This was a largescale genome-wide association analysis (GWAS) including a total of 981 patients. 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant loci were further genotyped using MassARRAY system and TaqMan SNP assays in the validation stages of 847 patients. This study used logistic regression analysis and multiple bioinformatics tools such as PLINK, LocusZoom, LDBlockShow, GTEx, Pancan-meQTL and FUMA to examine genetic variants associated with radiotherapy efficacy in NPC. RESULTS: After genome-wide level analysis, 19 SNPs entered the validation stage (P < 1 × 10- 6), and rs11130424 ultimately showed statistical significance among these SNPs. The efficacy was better in minor allele carriers of rs11130424 than in major allele carriers. Further stratified analysis showed that the association existed in patients in the EBV-positive, smoking, and late-stage (III and IV) subgroups and in patients who underwent both concurrent chemoradiotherapy and induction/adjuvant chemotherapy. CONCLUSION: Our study showed that rs11130424 in the CACNA2D3 gene was associated with sensitivity to radiotherapy in NPC patients. TRIAL REGISTRATION NUMBER: Effect of genetic polymorphism on nasopharyngeal carcinoma chemoradiotherapy reaction, ChiCTR-OPC-14005257, Registered 18 September 2014, http://www.chictr.org.cn/showproj.aspx?proj=9546 .
Assuntos
Canais de Cálcio , Estudo de Associação Genômica Ampla , Neoplasias Nasofaríngeas , Humanos , Quimiorradioterapia , Variação Genética , Genótipo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Canais de Cálcio/genéticaRESUMO
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Assuntos
Edição de Genes , Neoplasias , Reprogramação Celular , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Microambiente Tumoral/genéticaRESUMO
BACKGROUND: Genetic variants associated with acute side effects of radiotherapy in nasopharyngeal carcinoma (NPC) remain largely unknown. METHODS: We performed a two-stage genome-wide association analysis including a total of 1084 patients, where 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant variants were then validated in an independent cohort of 765 patients using the MassARRAY system. Gene mapping, linkage disequilibrium, genome-wide association analysis, and polygenic risk score were conducted or calculated using FUMA, LDBlockShow, PLINK, and PRSice software programs, respectively. RESULTS: Five SNPs (rs6711678, rs4848597, rs4848598, rs2091255, and rs584547) showed statistical significance after validation. Radiotherapy toxicity was more serious in mutant minor allele carriers of all five SNPs. Stratified analysis further indicated that rs6711678, rs4848597, rs4848598, and rs2091255 correlated with skin toxicity in patients of EBV positive, late stage (III and IV), receiving both concurrent chemoradiotherapy and induction/adjuvant chemotherapy, and with OR values ranging from 1.92 to 2.66. For rs584547, high occurrence of dysphagia was found in A allele carriers in both the discovery (P = 1.27 × 10- 6, OR = 1.55) and validation (P = 0.002, OR = 4.20) cohorts. Furthermore, prediction models integrating both genetic and clinical factors for skin reaction and dysphagia were established. The area under curve (AUC) value of receiver operating characteristic (ROC) curves were 0.657 (skin reaction) and 0.788 (dysphagia). CONCLUSIONS: Rs6711678, rs4848597, rs4848598, and rs2091255 on chromosome 2q14.2 and rs584547 were found to be novel risk loci for skin toxicity and dysphagia in NPC patients receiving radiotherapy. TRIAL REGISTRATION: Chinese Clinical Trial Register (registration number: ChiCTR-OPC-14005257 and CTXY-140007-2).
Assuntos
Transtornos de Deglutição , Neoplasias Nasofaríngeas , Quimiorradioterapia , Transtornos de Deglutição/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/radioterapiaRESUMO
The cellular internal ribosomal entry site (IRES) is one of the most important elements to mediate cap-independent translational initiation, especially under conditions of stress and pathology. However, a high-throughput method to discover IRESs in these conditions is still lacking. Here, a possible way IRES long-read sequencing based on the latest high-throughput technologies is proposed to solve this problem. Based on this design, diversity and integrity of the transcriptome from original samples can be kept. The micro-environment that stimulates or inhibits IRES activity can also be mimicked. By using long read-length sequencing technology, additional experiments that are essential for ruling out the cryptic promoters or splicing events in routine IRES identification processes can be circumvented. It is hoped that this proposed methodology may be adopted for IRES element discovery, hence uncovering the full extent of the role of IRESs in disease, development, and stress. Also see the video abstract here https://youtu.be/JuWBbMzWXS8.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sítios Internos de Entrada Ribossomal/genética , Neoplasias/genética , Neoplasias/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Processamento Alternativo/genética , Animais , Genes Reporter , Variação Genética , Humanos , Regiões Promotoras Genéticas , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , TranscriptomaRESUMO
Deregulation of protein synthesis may be involved in multiple aspects of cancer, such as gene expression, signal transduction and drive specific cell biological responses, resulting in promoting cancer growth, invasion and metastasis. Study the molecular mechanisms about translational control may help us to find more effective anti-cancer drugs and develop novel therapeutic opportunities. Recently, the researchers had focused on targeting translational machinery to overcome cancer, and various small molecular inhibitors targeting translation factors or pathways have been tested in clinical trials and exhibited improving outcomes in several cancer types. There is no doubt that an insight into the class of translation regulation protein would provide new target for pharmacologic intervention and further provide opportunities to develop novel anti-tumor therapeutic interventions. In this review, we summarized the developments of translational control in cancer survival and progression et al, and highlighted the therapeutic approach targeted translation regulation to overcome the cancer.
Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Ribossômicas/metabolismo , Animais , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Biossíntese de Proteínas/efeitos dos fármacosRESUMO
Personalized drug therapy aims to provide tailored treatment for individual patient. Mass spectrometry (MS) is revolutionarily involved in this area because MS is a rapid, customizable, cost-effective, and easy to be used high-throughput method with high sensitivity, specificity, and accuracy. It is driving the formation of a new field, MS-based personalized drug therapy, which currently mainly includes five subfields: therapeutic drug monitoring (TDM), pharmacogenomics (PGx), pharmacomicrobiomics, pharmacoepigenomics, and immunopeptidomics. Gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS) are considered as the gold standard for TDM, which can be used to optimize drug dosage. Matrix-assisted laser desorption ionization-time of flight-MS (MALDI-TOF-MS) significantly improves the capability of detecting biomacromolecule, and largely promotes the application of MS in PGx. It is becoming an indispensable tool for genotyping, which is used to discover and validate genetic biomarkers. In addition, MALDI-TOF-MS also plays important roles in identity of human microbiome whose diversity can explain interindividual differences of drug response. Pharmacoepigenetics is to study the role of epigenetic factors in individualized drug treatment. MS can be used to discover and validate pharmacoepigenetic markers (DNA methylation, histone modification, and noncoding RNA). For the emerging cancer immunotherapy, personalized cancer vaccine has effective immunotherapeutic activity in the clinic. MS-based immunopeptidomics can effectively discover and screen neoantigens. This article systematically reviewed MS-based personalized drug therapy in the above mentioned five subfields. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Assuntos
Monitoramento de Medicamentos/métodos , Tratamento Farmacológico/métodos , Espectrometria de Massas/métodos , Medicina de Precisão/métodos , Antibacterianos/farmacologia , Antineoplásicos , Biomarcadores Farmacológicos/análise , Metilação de DNA/efeitos dos fármacos , Histonas/metabolismo , Humanos , Biópsia Líquida , Testes Farmacogenômicos/métodosRESUMO
Drug resistance in small cell lung cancer (SCLC) significantly affects the efficacy of chemotherapy treatment. However, due to the lack of tumor tissue samples, especially serial tumor samples during chemotherapy, the mechanism of chemotherapy resistance has not been fully studied. Circulating tumor DNA, which can be obtained in a noninvasive manner, can complement tumor sampling approaches for research in this field. We identified an SCLC patient with acquired drug resistance from 52 SCLC patients for whom follow-up data were available. By comparing somatic mutations in circulating tumor DNA before and after chemotherapy, for the first time, we found that the somatic mutation eIF3A R803K may be related to acquired chemotherapy resistance. Then, the association between the eIF3A R803K mutation and chemotherapy resistance was confirmed by samples from 254 lung cancer patients receiving chemotherapy. We found that the eIF3a R803K mutation weakened the proliferation ability of tumor cells but increased their resistance to chemotherapy. Further studies revealed that the eIF3A R803K mutation promotes cellular senescence. In addition, fisetin showed a synergistic effect with chemotherapy in eIF3A R803K mutant cells. These results suggest that the eIF3A R803K somatic mutation has the potential to predict chemotherapy resistance in SCLC. Moreover, the eIF3A R803K mutation promotes chemotherapy resistance by inducing senescence. Furthermore, a senolytic drug, fisetin, can reverse chemotherapy resistance mediated by the eIF3A R803K mutation.
Assuntos
Senescência Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Iniciação 3 em Eucariotos/genética , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular , Movimento Celular , Sobrevivência Celular , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação , Inibidores da Síntese de Proteínas/farmacologia , Inibidores da Síntese de Proteínas/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/mortalidadeRESUMO
PARP inhibitors are a group of inhibitors targeting poly(ADP-ribose) polymerases (PARP1 or PARP2) involved in DNA repair and transcriptional regulation, which may induce synthetic lethality in BRCAness tumors. Systematic analyzes of genomic sequencing in prostate cancer show that ~10%-19% of patients with primary prostate cancer have inactivated DNA repair genes, with a notably higher proportion of 23%-27% in patients with metastatic castration-resistant prostate cancer (mCRPC). These characteristic genomic alterations confer possible vulnerability to PARP inhibitors in patients with mCRPC who benefit only modestly from other therapies. However, only a small proportion of patients with mCRPC shows sensitivity to PARP inhibitors, and these sensitive patients cannot be fully identified by existing response prediction biomarkers. In this review, we provide an overview of the potential response prediction biomarkers and synergistic combinations studied in the preclinical and clinical stages, which may expand the population of patients with prostate cancer who may benefit from PARP inhibitors.
Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Ensaios Clínicos como Assunto , Humanos , Masculino , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias da Próstata/metabolismoRESUMO
BACKGROUND: COVID-19 is an extremely severe infectious disease. However, few studies have focused on the epidemiological and clinical characteristics of pediatric COVID-19. This study conducted a retrospective review of the epidemiological and clinical features of COVID-19 in children. METHODS: A retrospective study was conducted on children with a definite diagnosis of COVID-19 in mainland China using the web crawler technique to collect anonymous COVID-19 updates published by local health authorities. RESULTS: Three hundred forty-one children aged 4 days to 14 years with a median age of 7 years were included. Sixty-six percent of pediatric patients were infected via family members with COVID-19. The median incubation period was 9 days (interquartile range, 6 to 13). Asymptomatic cases accounted for 5.9%, of which 30% had abnormal chest radiologic findings. A majority of pediatric COVID-19 cases showed mild to moderate clinical features, and only a few developed severe or critical diseases (0.6% and 0.3%, respectively). Fever (77.9%) and cough (32.4%) were the predominant presenting symptoms of pediatric COVID-19. The pediatric patients had fewer underlying diseases and complications than adults. The treatment modalities for pediatric COVID-19 patients were not as complex as those of adult COVID-19 patients. The overall prognosis of pediatric COVID-19 was benign with a decent recovery. The median time from onset to cure was 16 days (interquartile range, 13 to 21). CONCLUSIONS: Compared to adults, COVID-19 in children has distinct features of epidemiology and clinical manifestations. The findings from this study might help to guide the development of measures to prevent and treat this ongoing global pandemic. TRIAL REGISTRATION: Chinese Clinical Trial Registry ( chictr.org.cn ) identifier: ChiCTR2000030464.
Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Adolescente , COVID-19 , Criança , Pré-Escolar , China/epidemiologia , Tosse/etiologia , Feminino , Febre/etiologia , Humanos , Lactente , Recém-Nascido , Masculino , Pandemias , Estudos Retrospectivos , SARS-CoV-2RESUMO
CSDE1 (cold shock domain containing E1) plays a key role in translational reprogramming, which determines the fate of a number of RNAs during biological processes. Interestingly, the role of CSDE1 is bidirectional. It not only promotes and represses the translation of RNAs but also increases and decreases the abundance of RNAs. However, the mechanisms underlying this phenomenon are still unknown. In this review, we propose a "protein-RNA connector" model to explain this bidirectional role and depict its three versions: sequential connection, mutual connection and facilitating connection. As described in this molecular model, CSDE1 binds to RNAs and cooperates with other protein regulators. CSDE1 connects with different RNAs and their regulators for different purposes. The triple complex of CSDE1, a regulator and an RNA reprograms translation in different directions for each transcript. Meanwhile, a number of recent studies have found important roles for CSDE1 in human diseases. This model will help us to understand the role of CSDE1 in translational reprogramming and human diseases. Video Abstract.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Doença/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Humanos , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
Warfarin has a very narrow therapeutic window and obvious interindividual variability in its effects, with many factors contributing to the body's response. Algorithms incorporating multiple genetic, environment and clinical factors have been established to select a precision dose for each patient. A number of randomized controlled trials (RCTs) were conducted to explore whether patients could benefit from these algorithms; however, the results were inconsistent. Some questions remain to be resolved. Recently, new genetic and non-genetic factors have been discovered to contribute to variability in optimal warfarin doses. The results of further RCTs have been unveiled, and guidelines for pharmacogenetically guided warfarin dosing have been updated. Based on these most recent advancements, we summarize some open questions in this field and try to propose possible strategies to resolve them.
Assuntos
Anticoagulantes/uso terapêutico , Tromboembolia/tratamento farmacológico , Varfarina/uso terapêutico , Algoritmos , Humanos , Medicina de Precisão/métodos , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Postpartum depressive symptoms (PDS) are not an uncommon mood disorder in postpartum women. Our previous research indicated a role for increased tryptophan (TRP) metabolism along the kynurenine pathway (KP) in the pathogenesis of PDS. Accordingly, this study was going to investigate the association of indoleamine-2,3-dioxygenase (IDO, a key enzyme of KP) genetic polymorphisms with PDS. Seven hundred twenty-five women receiving cesarean section were enrolled in this study. PDS was determined by an Edinburgh Postnatal Depression Scale (EPDS) score ≥ 13. Subsequently, 48 parturients with PDS and 48 parturients without PDS were selected for investigation of perinatal serum concentrations of TRP, kynurenine (KYN), and KYN/TRP ratio, the latter is the representative of IDO activity. In addition, seven single nucleotide polymorphisms of the IDO gene were examined. Following this genotyping, 50 parturients carrying the IDO rs10108662 AA genotype and 50 parturients carrying the IDO rs10108662 AC + CC genotype were selected for comparisons of TRP, KYN, and KYN/TRP ratio levels. This study showed the PDS incidence of 6.9% in the Chinese population, with PDS characterized by increased IDO activity (p < 0.05), versus women without PDS. We also found that the variations of IDO1 gene rs10108662 were significantly related to PDS incidence (p < 0.05). Furthermore, there was a significant difference in IDO activity between the IDO rs10108662 CA + AA, versus CC, genotypes. Our findings indicate a role of the kynurenine pathway in the development of PDS, rs10108662 genetic polymorphism resulting in changes of IDO activity might contribute to PDS pathogenesis.
Assuntos
Cesárea/psicologia , Depressão Pós-Parto/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Polimorfismo de Nucleotídeo Único , Adulto , Povo Asiático/estatística & dados numéricos , Estudos de Casos e Controles , China/epidemiologia , Depressão Pós-Parto/epidemiologia , Feminino , Genótipo , Humanos , Cinurenina/sangue , Gravidez , Triptofano/sangueRESUMO
Metastasis is the main cause of lung cancer-related death. The tumor microenvironment greatly contributes to tumor metastasis. Resistin, mainly secreted by tumor-associated macrophages in tumor tissues, is a 12.5-kDa cysteine-rich secretory protein that is found at significantly higher levels in the serum or plasma of cancer patients compared with healthy controls. In this study, we explored the expression and role of resistin in lung adenocarcinoma. Our study showed that resistin was strongly expressed in lung adenocarcinoma tissues and promoted the migration and invasion of lung adenocarcinoma cells in a dose-dependent manner. Toll-like receptor 4 (TLR4) was the functional receptor of resistin for migration and invasion in A549 cells. Src/epidermal growth factor receptor (EGFR) was involved in resistin-induced migration and invasion. Resistin increased the phosphorylation of EGFR through the TLR4/Src pathway. We also found that PI3K/nuclear factor (NF)-κB were the intracellular downstream effectors mediating resistin-induced migration and invasion. Taken together, our results suggested that resistin promoted lung adenocarcinoma metastasis through the TLR4/Src/EGFR/PI3K/NF-κB pathway.
Assuntos
Adenocarcinoma/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Resistina/metabolismo , Receptor 4 Toll-Like/metabolismo , Quinases da Família src/metabolismo , Células A549 , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Humanos , Neoplasias Pulmonares/patologia , Metástase Neoplásica/patologia , Transdução de Sinais/fisiologia , Células U937RESUMO
Platinum-based chemotherapy agents are widely used in the treatment of various solid malignancies. However, their efficacy is limited by drug resistance. Recent studies suggest that copper efflux transporters, which are encoded by ATP7A and ATP7B, play an important role in platinum drug resistance. Over-expressions of ATP7A and ATP7B are observed in multiple cancers. Moreover, their expressions are associated with cancer prognosis and treatment outcomes of platinum-based chemotherapy. In our review, we highlight the roles of ATP7A/7B in platinum drug resistance and cancer progression. We also discuss the possible mechanisms of platinum drug resistance mediated by ATP7A/7B and provide novel strategies for overcoming resistance. This review may be helpful for understanding the roles of ATP7A and ATP7B in platinum drug resistance. © 2018 IUBMB Life, 70(3):183-191, 2018.
Assuntos
ATPases Transportadoras de Cobre/genética , Neoplasias/tratamento farmacológico , Platina/uso terapêutico , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Platina/efeitos adversosRESUMO
OBJECTIVE: To investigate the role of HELQ in chemo-resistance of epithelial ovarian carcinoma (EOC), which is a critical factor of patients' prognosis. METHODS: Immunohistochemistry, survival analysis of our 87 EOC patients and bioinformatics analysis of The Cancer Genome Atlas (TCGA) datasets (Nature, 2011) disclosed the clinical importance of HELQ expression. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), and Western Blot analyses of EOC tissue were used to confirm it. Ectopic overexpression and RNA interference knockdown of HELQ were carried out in OVCAR3 and A2780 cell lines, respectively, to determine the effect of altered HELQ expression on cellular response to cisplatin by CCK8 assay. The DNA repair capacity of these cells was evaluated by using host-cell reactivation assay. Western Blot analyses were carried out to determine the effect of HLEQ on the DNA repair genes by using cells with altered HELQ expression. RESULTS: HELQ expression associates with response of EOC patients to platinum-based chemotherapy and their overall survival (OS), disease free survival (DFS). HELQ overexpression or knockdown, respectively, increased and decreased the cellular resistance to cisplatin, DNA repair activity, and expression of DNA repair proteins of Nucleotide excision repair (NER) pathway. CONCLUSIONS: HELQ plays an important role in regulating the expression of DNA repair proteins NER pathway which, in turn, contributes to cellular response to cisplatin and patients' response to platinum-based chemotherapy. Our results demonstrated that HELQ could serve as a novel indicator for chemo-resistance of EOC, which can predict the prognosis of the disease.
Assuntos
Cisplatino/farmacologia , DNA Helicases/metabolismo , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/enzimologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/enzimologia , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , DNA Helicases/biossíntese , DNA Helicases/deficiência , DNA Helicases/genética , Reparo do DNA , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Taxa de SobrevidaRESUMO
PURPOSE: On account of the potential inhibition of OATP1B1 (organic anion transporting polypeptide) by angiotensin II receptor blockers (ARBs) and the effects of SLCO1B1 (solute carrier organic anion transporter family member) polymorphism, the aim of current study is to assess the impact of ARBs on the pharmacokinetics (PK) and pharmacodynamics (PD) of repaglinide in Chinese healthy volunteers with different SLCO1B1 genotypes. METHODS: The in vitro study was conducted on irbesartan, valsartan, olmesartan, and losartan by using HEK293 cells transfected with OATP1B1. Data on drug interactions between repaglinide and irbesartan from 21 healthy Chinese-Han male volunteers were collected and analyzed. RESULTS: IC50 from in vitro study suggested irbesartan was the most potent inhibitor of OATP1B1 transporter. Clinical data from single dose of repaglinide indicated SLCO1B1 c.521 T>C polymorphism influenced the PK and PD of repaglinide in healthy Chinese-Han male volunteers. In subjects with SLCO1B1 c.521 TT genotype, irbesartan comedication increased the exposure of repaglinide. In details, the peak plasma concentration [Cmax] increased 84% (P = 0.003) and the area under the curve of plasma concentration 0-8 h [AUC0-8] increased 34% (P = 0.004), while the minimum blood glucose concentration [Cmin] decreased 33.8% (P = 0.005). No significant change was observed in repaglinide exposure in subjects with SLCO1B1 c.521 TC genotype in presence or absence of irbesartan. CONCLUSION: SLCO1B1 c.521 T>C polymorphism affects the PK of repaglinide in Chinese population. Irbesartan increased repaglinide exposure in subjects with SLCO1B1 c.521 TT genotype, but not SLCO1B1 c.521 TC genotype.
Assuntos
Povo Asiático/genética , Compostos de Bifenilo/farmacologia , Carbamatos/farmacologia , Carbamatos/farmacocinética , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Piperidinas/farmacologia , Piperidinas/farmacocinética , Polimorfismo de Nucleotídeo Único/genética , Tetrazóis/farmacologia , Adulto , Glicemia/efeitos dos fármacos , Carbamatos/sangue , Células Cultivadas , China/etnologia , Relação Dose-Resposta a Droga , Interações Medicamentosas/genética , Genótipo , Voluntários Saudáveis , Humanos , Imidazóis/farmacologia , Irbesartana , Losartan/farmacologia , Masculino , Piperidinas/sangue , Valsartana/farmacologia , Adulto JovemRESUMO
BACKGROUND: Epigenetic alterations are strongly associated with the development of cancer. The aim of this study was to identify epigenetic pattern in squamous cell lung cancer (LUSC) on a genome-wide scale. RESULTS: Here we performed DNA methylation profiling on 24 LUSC and paired non-tumor lung (NTL) tissues by Illumina Human Methylation 450 K BeadArrays, and identified 5214 differentially methylated probes. By integrating DNA methylation and mRNA expression data, 449 aberrantly methylated genes accompanied with altered expression were identified. Ingenuity Pathway analysis highlighted these genes which were closely related to the carcinogenesis of LUSC, such as ERK family, NFKB signaling pathway, Hedgehog signaling pathway, providing new clues for understanding the molecular mechanisms of LUSC pathogenesis. To verify the results of high-throughput screening, we used 56 paired independent tissues for clinical validation by pyrosequencing. Subsequently, another 343 tumor tissues from the Cancer Genome Atlas (TCGA) database were utilized for further validation. Then, we identified a panel of DNA methylation biomarkers (CLDN1, TP63, TBX5, TCF21, ADHFE1 and HNF1B) in LUSC. Furthermore, we performed receiver operating characteristics (ROC) analysis to assess the performance of biomarkers individually, suggesting that they could be suitable as potential diagnostic biomarkers for LUSC. Moreover, hierarchical clustering analysis of the DNA methylation data identified two tumor subgroups, one of which showed increased DNA methylation. CONCLUSIONS: Collectively, these results suggest that DNA methylation plays critical roles in lung tumorigenesis and may potentially be proposed as a diagnostic biomarker. TRIAL REGISTRATION: ChiCTR-RCC-12002830 Date of registration: 2012-12-17.
Assuntos
Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias de Células Escamosas/genética , Feminino , Genoma Humano , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/diagnóstico , Masculino , Pessoa de Meia-Idade , Neoplasias de Células Escamosas/diagnósticoRESUMO
Platinum-based chemotherapy is the standard first-line treatment for most lung cancer patients. However, the toxicity induced by platinum-based chemotherapy greatly impedes its clinical use. Previous studies showed that long non-coding RNAs (lncRNAs) with over 200 nucleotides in length affect drug response and toxicity. In the present study, we investigated the association of well-characterized lung cancer lncRNA polymorphisms with platinum-based chemotherapy toxicity in Chinese patients with lung cancer. A total of 467 lung cancer patients treated with platinum-based chemotherapy for at least two cycles were recruited. We primarily focused on gastrointestinal and hematological toxicities. A total of 14 potentially functional polymorphisms within 8 lncRNAs (HOTTIP, HOTAIT, H19, ANRIL, CCAT2, MALAT1, MEG3, and POLR2E) were genotyped. Unconditional logistical regression analysis was conducted to assess the associations. Gene-gene and gene-environment interactions were identified using the software generalized multifactor dimensionality reduction (GMDR). ANRIL rs1333049 was associated with severe overall toxicity in an additive model (adjusted OR=0.723, 95% CI=0.541-0.965, P=0.028). ANRIL rs1333049 was also associated with severe gastrointestinal toxicity in both the additive (adjusted OR=0.690, 95% CI=0.489-0.974, P=0.035) and dominant (adjusted OR=0.558, 95% CI=0.335-0.931, P=0.025) models. MEG3 rs116907618 was associated with severe gastrointestinal toxicity in an additive model (adjusted OR=1.717, 95% CI=1.007-2.927, P=0.047). GMDR identified the three-factor interaction model of POLR2E rs3787016-HOTTIP rs3807598-chemotherapy regimen as the best predictive model for hematological toxicity. In conclusion, ANRIL and MEG3 genetic polymorphisms are associated with severe platinum toxicity and could be considered as biomarkers for pretreatment evaluation in Chinese patients with lung cancer.
Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Compostos Organoplatínicos/efeitos adversos , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Feminino , Interação Gene-Ambiente , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Adulto JovemRESUMO
There is considerable inter-individual variabil¬ity in chemoradiotherapy responses in nasopharyngeal carcinoma (NPC) patients receiv¬ing the same or similar treatment protocols. In this study we evaluated the association between the gene polymorphisms in endoplasmic reticulum (ER) stress pathway and chemoradiation responses in Chinese NPC patients. A total of 150 patients with histopathologically conformed NPC and treated with concurrent chemoradiotherapy were enrolled. Genotypes in ER stress pathway genes, including VCP (valosin-containing protein) rs2074549, HSP90B1 rs17034943, CANX (calnexin) rs7566, HSPA5 [heat shock protein family A (Hsp70) member 5] rs430397, CALCR (calcitonin receptor) rs2528521, and XBP1 (X-box binding protein 1) rs2269577 were analyzed by Sequenom MassARRAY system. The short-term effects of primary tumor and lymph node after radiotherapy were assessed based on the Response Evaluation Criteria in Solid Tumors (RECIST) of WHO. And acute radiation-induced toxic reactions were evaluated according to the Radiation Therapy Oncology Group or European Organization for Research and Treatment of Cancer (RTOG/EORTC). The effects of gene polymorphisms on clinical outcomes of chemoradiotherapy were assessed by chi-square test, univariate and multivariate logistic regression analyses. We found that CT and CT+CC genotypes of CANX rs7566 was significantly correlated with primary tumor treatment efficacy at 3 months after chemoradiotherapy and with occurrence of radiation-induced myelosuppression in Chinese NPC patients. CT and CT+CC genotypes of CALCR rs2528521 were significantly correlated with cervical lymph node efficacy at 3 months after chemoradiotherapy. And CC and CT+CC genotypes of VCP rs2074549 were significantly associated with occurrence of myelosuppression. In conclusion, SNPs of VCP rs2074549, CANX rs7566 and CALCR rs2528521 in ER stress pathway genes may serve as predictors for clinical outcomes of chemoradiotherapy in Chinese NPC patients.