Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Metabolomics ; 20(5): 93, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096405

RESUMO

INTRODUCTION: Bovine milk contains a rich matrix of nutrients such as carbohydrates, fat, protein and various vitamins and minerals, the composition of which is altered by factors including dietary regime. OBJECTIVES: The objective of this research was to investigate the impact of dietary regime on the metabolite composition of bovine whole milk powder and buttermilk. METHODS: Bovine whole milk powder and buttermilk samples were obtained from spring-calving cows, consuming one of three diets. Group 1 grazed outdoors on perennial ryegrass which was supplemented with 5% concentrates; group 2 were maintained indoors and consumed a total mixed ration diet; and group 3 consumed a partial mixed ration diet consisting of perennial ryegrass during the day and total mixed ration maintained indoors at night. RESULTS: Metabolomic analysis of the whole milk powder (N = 27) and buttermilk (N = 29) samples was preformed using liquid chromatography-tandem mass spectrometry, with 504 and 134 metabolites identified in the samples respectively. In whole milk powder samples, a total of 174 metabolites from various compound classes were significantly different across dietary regimes (FDR adjusted p-value ≤ 0.05), including triglycerides, of which 66% had their highest levels in pasture-fed samples. Triglycerides with highest levels in pasture-fed samples were predominantly polyunsaturated with high total carbon number. Regarding buttermilk samples, metabolites significantly different across dietary regimes included phospholipids, sphingomyelins and an acylcarnitine. CONCLUSION: In conclusion the results reveal a significant impact of a pasture-fed dietary regime on the metabolite composition of bovine dairy products, with a particular impact on lipid compound classes.


Assuntos
Ração Animal , Leitelho , Metabolômica , Leite , Animais , Bovinos/metabolismo , Leite/química , Leite/metabolismo , Metabolômica/métodos , Leitelho/análise , Ração Animal/análise , Dieta/veterinária , Pós , Metaboloma , Espectrometria de Massas em Tandem , Feminino , Cromatografia Líquida/métodos
2.
J Struct Biol ; 215(3): 107988, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364762

RESUMO

Structural biological hard tissues fulfill diverse tasks: protection, defence, locomotion, structural support, reinforcement, buoyancy. The cephalopod mollusk Spirula spirula has a planspiral, endogastrically coiled, chambered, endoskeleton consisting of the main elements: shell-wall, septum, adapical-ridge, siphuncular-tube. The cephalopod mollusk Sepia officinalis has an oval, flattened, layered-cellular endoskeleton, formed of the main elements: dorsal-shield, wall/pillar, septum, siphuncular-zone. Both endoskeletons are light-weight buoyancy devices that enable transit through marine environments: vertical (S. spirula), horizontal (S. officinalis). Each skeletal element of the phragmocones has a specific morphology, component structure and organization. The conjunction of the different structural and compositional characteristics renders the evolved nature of the endoskeletons and facilitates for Spirula frequent migration from deep to shallow water and for Sepia coverage over large horizontal distances, without damage of the buoyancy device. Based on Electron-Backscatter-Diffraction (EBSD) measurements and TEM, FE-SEM, laser-confocal-microscopy imaging we highlight for each skeletal element of the endoskeleton its specific mineral/biopolymer hybrid nature and constituent arrangement. We demonstrate that a variety of crystal morphologies and biopolymer assemblies are needed for enabling the endoskeleton to act as a buoyancy device. We show that all organic components of the endoskeletons have the structure of cholesteric-liquid-crystals and indicate which feature of the skeletal element yields the necessary mechanical property to enable the endoskeleton to fulfill its function. We juxtapose structural, microstructural, texture characteristics and benefits of coiled and planar endoskeletons and discuss how morphometry tunes structural biomaterial function. Both mollusks use their endoskeleton for buoyancy regulation, live and move, however, in distinct marine environments.


Assuntos
Cefalópodes , Sepia , Animais , Moluscos , Sepia/anatomia & histologia , Decapodiformes
3.
Immunol Cell Biol ; 101(6): 556-577, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36967673

RESUMO

CO2 is produced during aerobic respiration. Normally, levels of CO2 in the blood are tightly regulated but pCO2 can rise (hypercapnia, pCO2 > 45 mmHg) in patients with lung diseases, for example, chronic obstructive pulmonary disease (COPD). Hypercapnia is a risk factor in COPD but may be of benefit in the context of destructive inflammation. The effects of CO2 per se, on transcription, independent of pH change are poorly understood and warrant further investigation. Here we elucidate the influence of hypercapnia on monocytes and macrophages through integration of state-of-the-art RNA-sequencing, metabolic and metabolomic approaches. THP-1 monocytes and interleukin 4-polarized primary murine macrophages were exposed to 5% CO2 versus 10% CO2 for up to 24 h in pH-buffered conditions. In hypercapnia, we identified around 370 differentially expressed genes (DEGs) under basal and about 1889 DEGs under lipopolysaccharide-stimulated conditions in monocytes. Transcripts relating to both mitochondrial and nuclear-encoded gene expression were enhanced in hypercapnia in basal and lipopolysaccharide-stimulated cells. Mitochondrial DNA content was not enhanced, but acylcarnitine species and genes associated with fatty acid metabolism were increased in hypercapnia. Primary macrophages exposed to hypercapnia also increased activation of genes associated with fatty acid metabolism and reduced activation of genes associated with glycolysis. Thus, hypercapnia elicits metabolic shifts in lipid metabolism in monocytes and macrophages under pH-buffered conditions. These data indicate that CO2 is an important modulator of monocyte transcription that can influence immunometabolic signaling in immune cells in hypercapnia. These immunometabolic insights may be of benefit in the treatment of patients experiencing hypercapnia.


Assuntos
Hipercapnia , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Hipercapnia/etiologia , Hipercapnia/metabolismo , Dióxido de Carbono , Monócitos/metabolismo , Genes Mitocondriais , Lipopolissacarídeos , Doença Pulmonar Obstrutiva Crônica/complicações , Expressão Gênica , Ácidos Graxos
4.
J Nutr ; 153(1): 56-65, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913479

RESUMO

BACKGROUND: Pregnancy and postpartum are periods of intense changes in women's metabolism. The knowledge of the metabolites and maternal factors underlying these changes is limited. OBJECTIVES: We aimed to investigate the maternal factors that could influence serum metabolome changes from late pregnancy to the first months of postpartum. METHODS: Sixty-eight healthy women from a Brazilian prospective cohort were included. Maternal blood and general characteristics were collected during pregnancy (28-35 wk) and postpartum (27-45 d). A targeted metabolomics approach was applied to quantify 132 serum metabolites, including amino acids, biogenic amines, acylcarnitines, lysophosphatidylcholines (LPC), diacyl phosphatidylcholines (PC), alkyl:acyl phosphatidylcholines (PC-O), sphingomyelins with (SM) and without hydroxylation [SM(OH)], and hexoses. Metabolome changes from pregnancy to postpartum were measured as log2 fold change (log2FC), and simple linear regressions were employed to evaluate associations between maternal variables and metabolite log2FC. Multiple comparison-adjusted P values of < 0.05 were considered significant. RESULTS: Of 132 metabolites quantified in serum, 90 changed from pregnancy to postpartum. Most metabolites belonging to PC and PC-O classes decreased, whereas most LPC, acylcarnitines, biogenic amines, and a few amino acids increased in postpartum. Maternal prepregnancy body mass index (ppBMI) showed positive associations with leucine and proline. A clear opposite change pattern was observed for most metabolites across ppBMI categories. Few phosphatidylcholines were decreased in women with normal ppBMI, while an increase was observed in women with obesity. Similarly, women with high postpartum levels of total cholesterol, LDL cholesterol, and non-HDL cholesterol showed increased sphingomyelins, whereas a decrease was observed for women with lower levels of those lipoproteins. CONCLUSIONS: The results revealed several maternal serum metabolomic changes from pregnancy to postpartum, and the maternal ppBMI and plasma lipoproteins were associated with these changes. We highlight the importance of the nutritional care of women prepregnancy to improve their metabolic risk profile.


Assuntos
Metaboloma , Esfingomielinas , Humanos , Gravidez , Feminino , Índice de Massa Corporal , Estudos Prospectivos , Metabolômica/métodos , Período Pós-Parto , Lipoproteínas , Aminoácidos , Colesterol , Fosfatidilcolinas , Aminas Biogênicas
5.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108244

RESUMO

Resistance to neoadjuvant chemoradiation therapy is a significant clinical challenge in the management of rectal cancer. There is an unmet need to identify the underlying mechanisms of treatment resistance to enable the development of biomarkers predictive of response and novel treatment strategies to improve therapeutic response. In this study, an in vitro model of inherently radioresistant rectal cancer was identified and characterized to identify mechanisms underlying radioresistance in rectal cancer. Transcriptomic and functional analysis demonstrated significant alterations in multiple molecular pathways, including the cell cycle, DNA repair efficiency and upregulation of oxidative phosphorylation-related genes in radioresistant SW837 rectal cancer cells. Real-time metabolic profiling demonstrated decreased reliance on glycolysis and enhanced mitochondrial spare respiratory capacity in radioresistant SW837 cells when compared to radiosensitive HCT116 cells. Metabolomic profiling of pre-treatment serum samples from rectal cancer patients (n = 52) identified 16 metabolites significantly associated with subsequent pathological response to neoadjuvant chemoradiation therapy. Thirteen of these metabolites were also significantly associated with overall survival. This study demonstrates, for the first time, a role for metabolic reprograming in the radioresistance of rectal cancer in vitro and highlights a potential role for altered metabolites as novel circulating predictive markers of treatment response in rectal cancer patients.


Assuntos
Neoplasias Retais , Humanos , Neoplasias Retais/genética , Neoplasias Retais/terapia , Neoplasias Retais/patologia , Reparo do DNA , Reto/patologia , Perfilação da Expressão Gênica , Metabolismo Energético , Tolerância a Radiação/genética , Terapia Neoadjuvante
6.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764384

RESUMO

Bovine milk is a nutrient-dense food and a major component of the human diet. Therefore, understanding the factors that impact its composition is of great importance. Applications of metabolomics provide in-depth analysis of the metabolite composition of milk. The objective of this research was to examine the impact of lactation stage on bovine milk metabolite levels. Metabolomic analysis of bovine milk powder samples across lactation (N = 18) was performed using nuclear magnetic resonance (1H-NMR) spectroscopy and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Forty-one metabolites were identified and quantified in the 1H-NMR spectra. Statistical analysis revealed that 17 metabolites were significantly different across lactation stages (FDR < 0.05), of which the majority had higher levels in early lactation. In total, 491 metabolites were measured using LC-MS/MS, of which 269 had significantly different levels across lactation (FDR < 0.05). Compound classes significantly affected by lactation stage included phosphatidylcholines (59%) and triglycerides (64%), of which 100% of phosphatidylcholines and 61% of triglycerides increased from early lactation onwards. Our study demonstrates significant differences in metabolites across the stages of lactation, with early-lactation milk having a distinct metabolomic profile. More research is warranted to further explore these compositional differences to inform animal feeding practice.

7.
J Proteome Res ; 21(3): 683-690, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978446

RESUMO

Metabolomics is increasingly applied to investigate diet-disease associations in nutrition research. However, studies of metabolite reproducibility are limited, which could hamper their use within epidemiologic studies. The objective of this study was to evaluate the metabolite reproducibility during 4 months in a free-living population. In the A-DIET Confirm study, fasting plasma and dietary data were collected once a month for 4 months. Metabolites were measured using liquid chromatography tandem mass spectrometry, and their reproducibility was estimated using the intraclass correlation coefficient (ICC). Regularized canonical correlation analysis (rCCA) was employed to examine the diet-metabolite associations. In total, 138 metabolites were measured, and median ICC values of 0.49 and 0.65 were found for amino acids and biogenic amines, respectively. Acylcarnitines, lysophosphatidylcholines, phosphatidylcholines, and sphingomyelins had median ICC values of 0.69, 0.66, 0.63, and 0.63, respectively. The median ICC for all metabolites was 0.62, and 54% of metabolites had ICC values ≥0.60. Additionally, the rCCA heat map revealed positive correlations between dairy/meat intake and specific lipids. In conclusion, more than half of the metabolites demonstrated good to excellent reproducibility. A single measurement per subject could appropriately reflect the metabolites' long-term concentration levels and may also be sufficient for assessing disease risk in epidemiologic studies. The study data are deposited in MetaboLights (MTBLS3428 (www.ebi.ac.uk/metabolights)).


Assuntos
Metaboloma , Metabolômica , Cromatografia Líquida , Metabolômica/métodos , Plasma , Reprodutibilidade dos Testes
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(11): 1269-1275, 2020 Nov 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35753740

RESUMO

OBJECTIVES: To explore the effect of salvianolic acid A (SalA) on the proliferation and apoptosis in esophageal cancer cell line KYSE-150 and the possible mechanisms. METHODS: The esophageal cancer cells were randomly divided into 4 groups: a control group, a 10 µmol/L SalA group, a 25 µmol/L SalA group, and a 50 µmol/L SalA group. Cell counting kit-8 (CCK-8) was used to detect the cell proliferation activity. Flow cytometry was used to detect cell cycle distribution and cell apoptosis rate. Western blotting was used to detect the protein expression of cell proliferation maker Ki-67, cyclin D1, cyclin-dependent kinase 4 (CDK4), CDK6, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X (Bax), cleaved-caspase-9, cleaved-caspase-3, phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (p-Akt) and mechanistic target of rapamycin (mTOR). RESULTS: Compared with the control group, the cell proliferation activity was significantly reduced (P<0.01); the cells in the G1 phase were significantly increased, and the S phase cells were significantly reduced (both P<0.01); the cell apoptosis rate was significantly increased (P<0.01) in the SalA groups at different concentration; the expression levels of Ki-67, cyclin D1, CDK4, CDK6, Bcl-2, PI3K, p-Akt and mTOR were decreased significantly, but the expression levels of p21, Bax, cl-caspase-9 and cl-caspase-3 were increased significantly in the SalA groups at different concentration (all P<0.01). CONCLUSIONS: SalA can inhibit the proliferation and induce G1 phase arrest and apoptosis in the esophageal cancer cell line KYSE-150, which may be related to the activation of PI3K/Akt/mTOR signal pathway.

9.
Small ; 15(52): e1903135, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31774631

RESUMO

BAY55-9837, a potential therapeutic peptide in the treatment of type 2 diabetes mellitus (T2DM), is capable of inducing glucose (GLC)-dependent insulin secretion. However, the therapeutic benefit of BAY55-9837 is limited by its short half-life, lack of targeting ability, and poor blood GLC response. How to improve the blood GLC response of BAY55-9837 is an existing problem that needs to be solved. In this study, a method for preparing BAY55-9837-loaded exosomes coupled with superparamagnetic iron oxide nanoparticle (SPIONs) with pancreas islet targeting activity and an enhanced blood GLC response with the help of an external magnetic force (MF) is demonstrated. The plasma half-life of BAY55-9837 loaded in exosome-SPION is 27-fold longer than that of BAY55-9837. The active targeting property of SIPONs enables BAY-exosomes to gain a favorable targeting property, which improves the BAY55-9837 blood GLC response capacity with the help of an external MF. In vivo studies show that BAY-loaded exosome-based vehicle delivery enhances pancreas islet targeting under an external MF and markedly increases insulin secretion, thereby leading to the alleviation of hyperglycemia. The chronic administration of BAY-exosome-SPION/MF significantly improves glycosylated hemoglobin and lipid profiles. BAY-exosome-SPION/MF maybe a promising candidate for a peptide drug carrier for T2DM with a better blood GLC response.


Assuntos
Exossomos/química , Pâncreas/metabolismo , Animais , Diabetes Mellitus Tipo 2/sangue , Ácidos Graxos/metabolismo , Compostos Férricos/química , Humanos , Camundongos , Nanopartículas/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
11.
J Phycol ; 54(1): 85-104, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29092105

RESUMO

Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the "nuclear envelope junction". The narrow gap of this junction likely facilitates transport of Ca2+ ions from the nuclear envelope to the coccolith vesicle. On the basis of our observations, we propose that formation of the coccolith utilizes the nuclear envelope-endoplasmic reticulum Ca2+ -store of the cell for the transport of Ca2+ ions from the external medium to the coccolith vesicle and that E. huxleyi calcite forms by ion-by-ion growth rather than by a nanoparticle accretion mechanism.


Assuntos
Carbonato de Cálcio/metabolismo , Haptófitas/fisiologia , Organelas/fisiologia
12.
BMC Microbiol ; 17(1): 129, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558650

RESUMO

BACKGROUND: With the growing demand for fossil fuels and the severe energy crisis, lignocellulose is widely regarded as a promising cost-effective renewable resource for ethanol production, and the use of lignocellulose residues as raw material is remarkable. Polar organisms have important value in scientific research and development for their novelty, uniqueness and diversity. RESULTS: In this study, a fungus Aspergillus sydowii MS-19, with the potential for lignocellulose degradation was screened out and isolated from an Antarctic region. The growth profile of Aspergillus sydowii MS-19 was measured, revealing that Aspergillus sydowii MS-19 could utilize lignin as a sole carbon source. Its ability to synthesize low-temperature lignin peroxidase (Lip) and manganese peroxidase (Mnp) enzymes was verified, and the properties of these enzymes were also investigated. High-throughput sequencing was employed to identify and characterize the transcriptome of Aspergillus sydowii MS-19. Carbohydrate-Active Enzymes (CAZyme)-annotated genes in Aspergillus sydowii MS-19 were compared with those in the brown-rot fungus representative species, Postia placenta and Penicillium decumbens. There were 701CAZymes annotated in Aspergillus sydowii MS-19, including 17 cellulases and 19 feruloyl esterases related to lignocellulose-degradation. Remarkably, one sequence annotated as laccase was obtained, which can degrade lignin. Three peroxidase sequences sharing a similar structure with typical lignin peroxidase and manganese peroxidase were also found and annotated as haem-binding peroxidase, glutathione peroxidase and catalase-peroxidase. CONCLUSIONS: In this study, the fungus Aspergillus sydowii MS-19 was isolated and shown to synthesize low-temperature lignin-degrading enzymes: lignin peroxidase (Lip) and manganese peroxidase (Mnp). These findings provide useful information to improve our understanding of low-temperature lignocellulosic enzyme production by polar microorganisms and to facilitate research and applications of the novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source.


Assuntos
Aspergillus/crescimento & desenvolvimento , Aspergillus/isolamento & purificação , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Regiões Antárticas , Aspergillus/classificação , Aspergillus/genética , Temperatura Baixa , Proteínas Fúngicas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Lacase/genética , Lacase/metabolismo , Lignina/biossíntese , Lignina/metabolismo , Anotação de Sequência Molecular , Peroxidases/genética , Peroxidases/metabolismo
13.
J Nutr ; 147(10): 1850-1857, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794208

RESUMO

BACKGROUND: Improved assessment of meat intake with the use of metabolomics-derived markers can provide objective data and could be helpful in clarifying proposed associations between meat intake and health. OBJECTIVE: The objective of this study was to identify novel markers of chicken intake using a metabolomics approach and use markers to determine intake in an independent cohort. METHODS: Ten participants [age: 62 y; body mass index (in kg/m2): 28.25] in the NutriTech food intake study consumed increasing amounts of chicken, from 88 to 290 g/d, in a 3-wk span. Urine and blood samples were analyzed by nuclear magnetic resonance and mass spectrometry, respectively. A multivariate data analysis was performed to identify markers associated with chicken intake. A calibration curve was built based on dose-response association using NutriTech data. A Bland-Altman analysis evaluated the agreement between reported and calculated chicken intake in a National Adult Nutrition Survey cohort. RESULTS: Multivariate data analysis of postprandial and fasting urine samples collected in participants in the NutriTech study revealed good discrimination between high (290 g/d) and low (88 g/d) chicken intakes. Urinary metabolite profiles showed differences in metabolite levels between low and high chicken intakes. Examining metabolite profiles revealed that guanidoacetate increased from 1.47 to 3.66 mmol/L following increasing chicken intakes from 88 to 290 g/d (P < 0.01). Using a calibration curve developed from the NutriTech study, chicken intake was calculated through the use of data from the National Adult Nutrition Survey, in which consumers of chicken had a higher guanidoacetate excretion (0.70 mmol/L) than did nonconsumers (0.47 mmol/L; P < 0.01). A Bland-Altman analysis revealed good agreement between reported and calculated intakes, with a bias of -30.2 g/d. Plasma metabolite analysis demonstrated that 3-methylhistidine was a more suitable indicator of chicken intake than 1-methylhistidine. CONCLUSIONS: Guanidoacetate was successfully identified and confirmed as a marker of chicken intake, and its measurement in fasting urine samples could be used to determine chicken intake in a free-living population. This trial was registered at clinicaltrials.gov as NCT01684917.


Assuntos
Glicina/análogos & derivados , Carne , Metabolômica , Metilistidinas/sangue , Animais , Biomarcadores/análise , Galinhas , Jejum/urina , Feminino , Glicina/urina , Humanos , Masculino , Pessoa de Meia-Idade , Carne Vermelha
14.
J Cell Mol Med ; 20(3): 471-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26710964

RESUMO

Deregulation of c-MYC occurs in a variety of human cancers. Overexpression of c-MYC promotes cell growth, proliferation, apoptosis, transformation and genomic instability. MYC target 1 (MYCT1) is a direct target gene of c-MYC, and its murine homologue MT-MC1 recapitulated multiple c-Myc-related phenotypes. However, the molecular mechanism of MYCT1 remains unclear. Here, we identified the transmembrane (TM) domain of MYCT1, not the nuclear localization sequence, is indispensable to the vesicle-associated localization of MYCT1 protein in the cytoplasmic membrane vesicle. Overexpression of MYCT1, not MYCT1 (ΔTM), decreased cell viability under serum deprivation and increased tumour cell migration ability. We further identified CKAP4 interacted with MYCT1 and contributed to the function of MYCT1. In addition, we found that a mutation, A88D, which is observed in patient sample, changed the localization, and abolished the effect on cell viability and cell migration, suggesting that the TM domain is critical to MYCT1.


Assuntos
Proteínas Nucleares/fisiologia , Sequência de Aminoácidos , Movimento Celular , Sobrevivência Celular , Sequência Conservada , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Proteínas Nucleares/química , Domínios Proteicos , Transporte Proteico , Vesículas Transportadoras/metabolismo
15.
Int J Syst Evol Microbiol ; 66(1): 353-359, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518711

RESUMO

A rod-shaped, Gram-stain-negative, slightly halotolerant bacterium, designated strain D15-8PT, was isolated from a sediment sample from the South China Sea. The strain could grow in NaCl concentrations ranging from 0.5 % to 10 % (w/v) (optimum 0.5-1.5 %), and could be cultivated at 10-40 °C (optimum 25 °C) and pH 5.5-9.5 (optimum pH 7.0-8.0). The strain was positive for catalase, oxidase, and hydrolysis of Tween 80, but negative for hydrolysis of DNA and gelatin, nitrite reduction, indole production, Voges-Proskauer reaction, and methyl red test. Strain D15-8PT could biodegrade naphthalene, phenanthrene, and anthracene. The major respiratory quinone was Q-9. The main cellular fatty acids were C12 : 0 (11.5 %), C14 : 0 3-methyl (22.0 %), C16 : 0 (19.2 %), C16 : 1ω9c (22.9 %), and C18 : 1ω9c (6.7 %). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid and an unidentified phospholipid. The DNA G+C content was 56.8 mol%. Phylogenetic analyses based on 16S rRNA genes showed that strain D15-8PT was most closely related to Marinobacter maritimus JCM 12521T (98.5 % 16S rRNA gene sequence similarity), Marinobacter antarcticus CGMCC 1.10835T (98.1 %), Marinobacter lipolyticus DSM 15157T (97.1 %), and Marinobacter guineae CECT 7243T (97.0 %). Results of the gyrB gene analysis and DNA-DNA hybridization were both less than the cut-off values (90 % for gyrB gene sequence similarity and 70 % for DNA-DNA hybridization). On the basis of this taxonomic study using a polyphasic approach, strain D15-8PT represents a novel species of the genus Marinobacter, for which the name Marinobacter aromaticivorans sp. nov. is proposed. The type strain is D15-8PT ( = CGMCC 1.11015T = KCTC 23781T).


Assuntos
Marinobacter/classificação , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Água do Mar/microbiologia , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , Marinobacter/genética , Marinobacter/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
16.
Electrophoresis ; 36(4): 596-606, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25395232

RESUMO

Graphene oxide (GO) nanosheets were incorporated into an organic polymer monolith containing 3-acrylamidophenylboronic acid (AAPBA) and pentaerythritol triacrylate (PETA) to form a novel monolithic stationary phase for CEC. The effects of the mass ratio of AAPBA/PETA, the amount of GO, and the volume of porogen on the morphology, permeability and pore properties of the prepared poly(AAPBA-GO-PETA) monoliths were investigated. A series of test compounds including amides, alkylbenzenes, polycyclic aromatics, phenols, and anilines were used to evaluate and compare the separation performances of the poly(AAPBA-GO-PETA) and the parent poly(AAPBA-co-PETA) monoliths. The results indicated that incorporation of GO into monolithic column exhibited much higher resolutions (>1.5) and column efficiency (62,000 ∼ 110,000 plates/m for toluene, DMF, formamide, and thiourea) than the poly(AAPBA-co-PETA). The successful application in isocratic separation of peptides suggests the potential of the GO incorporated monolithic column in complex sample analysis. In addition, the reproducibility and stability of the prepared poly(AAPBA-GO-PETA) monolith was assessed. The run-to-run, column-to-column and batch-to-batch reproducibilities of this monolith for alkylbenzenes' retention were satisfactory with the RSDs less than 1.8% (n = 5), 3.7% and 5.6% (n = 3), respectively, indicating the effectiveness and practicability of the proposed method.


Assuntos
Cromatografia Líquida/métodos , Grafite/química , Nanoestruturas/química , Compostos Orgânicos/isolamento & purificação , Polímeros/química , Acrilatos , Compostos de Boro/química , Ácidos Borônicos , Cromatografia Líquida/instrumentação , Fenômenos Eletromagnéticos , Concentração de Íons de Hidrogênio , Compostos Orgânicos/química , Peptídeos/isolamento & purificação , Fenóis/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Propilenoglicóis , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Biol Chem ; 288(49): 35500-10, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24165128

RESUMO

Lithium is an effective mood stabilizer that has been clinically used to treat bipolar disorder for several decades. Recent studies have suggested that lithium possesses robust neuroprotective and anti-tumor properties. Thus far, a large number of lithium targets have been discovered. Here, we report for the first time that HDAC1 is a target of lithium. Lithium significantly down-regulated HDAC1 at the translational level by targeting HDAC1 mRNA. We also showed that depletion of HDAC1 is essential for the neuroprotective effects of lithium and for the lithium-mediated degradation of mutant huntingtin through the autophagic pathway. Our studies explain the multiple functions of lithium and reveal a novel mechanism for the function of lithium in neurodegeneration.


Assuntos
Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Lítio/farmacologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Autofagia , Proteínas CELF1 , Regulação para Baixo/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Células HeLa , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Proteína Huntingtina , Fármacos Neuroprotetores/farmacologia , Proteólise/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
18.
Electrophoresis ; 35(14): 1947-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24648248

RESUMO

Monodisperse iron oxide nanocrystals and organic solvents were utilized as coporogens in monolithic poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) capillary columns to afford stationary phases with enhanced electrochromatographic performance of small molecules. While the conventional monoliths using organic solvents only as a porogen exhibited poor resolution (Rs) <1.0 and low efficiency of 40 000-60 000 plates/m, addition of a small amount of nanocrystals to the polymerization mixture provided increased resolution (Rs > 3.0) and high efficiency ranged from 60 000 to 100 000 plates/m at the same linear velocity of 0.856 mm/s. It was considered that the mesopores introduced by the nanocrystals played an important role in the improvement of the monolith performance. This new strategy expanded the application range of the hydrophobic monoliths in the separation of polar alkaloids and narcotics. The successful applications demonstrated that the glycidyl methacrylate based monoliths prepared by using nanocrystal template are a good alternative for enhanced separation efficiency of small molecules.


Assuntos
Eletrocromatografia Capilar/instrumentação , Eletrocromatografia Capilar/métodos , Compostos Férricos/química , Metilmetacrilatos/química , Nanopartículas/química , Modelos Químicos , Entorpecentes/isolamento & purificação , Compostos Orgânicos/isolamento & purificação , Porosidade
19.
Braz J Microbiol ; 55(2): 1587-1599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647870

RESUMO

Due to the inflow of meltwater from the Midre Lovénbreen glacier upstream of Kongsfjorden, the nutrient concentration of Kongsfjorden change from the estuary to the interior of the fjord. Our objective was to explore the changes in bacterial community structure and metabolism-related genes from the estuary to fjord by metagenomic analysis. Our data indicate that glacial meltwater input has altered the physicochemical properties of the fjords, with a significant effect, in particular, on fjords salinity, thus altering the relative abundance of some specific bacterial groups. In addition, we suggest that the salinity of a fjord is an important factor affecting the abundance of genes associated with the nitrogen and sulfur cycles in the fjord. Changes in salinity may affect the relative abundance of microbial populations that carry metabolic genes, thus affecting the relative abundance of genes associated with the nitrogen and sulfur cycles.


Assuntos
Bactérias , Estuários , Metagenômica , Salinidade , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Regiões Árticas , Microbiota , Camada de Gelo/microbiologia , Variação Genética , Biodiversidade , Metagenoma , Enxofre/metabolismo , Nitrogênio/metabolismo , Filogenia
20.
Sci Rep ; 14(1): 17927, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095501

RESUMO

Plant-based diets have gained attention for their potential benefits on both human health and environmental sustainability. The objective of this study was to investigate the association of plant-based dietary patterns with the endogenous metabolites of healthy individuals and identify metabolites that may act as mediators of the associations between dietary intake and modifiable disease risk factors. Adherence to plant-based dietary patterns was assessed for 170 healthy adults using plant-based diet indexes (PDI). Individuals with higher healthful PDI had lower BMI and fasting glucose and higher HDL-C, while those with higher unhealthful PDI had higher BMI, triacylglycerol and fasting glucose and lower HDL-C. Unhealthful PDI was associated with higher levels of several amino acids and biogenic amines previously associated with cardiometabolic diseases and an opposite pattern was observed for healthful PDI. Furthermore, healthful PDI was associated with higher levels of glycerophosphocholines containing very long-chain fatty acids. Glutamate, isoleucine, proline, tyrosine, α-aminoadipate and kynurenine had a statistically significant mediation effect on the associations between PDI scores and LDL-C, HDL-C and fasting glucose. These findings contribute to the growing evidence supporting the role of plant-based diets in promoting metabolic health and shed light on the potential mechanisms explaining their beneficial health effects.


Assuntos
Dieta Vegetariana , Metabolômica , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Metabolômica/métodos , Metaboloma , Índice de Massa Corporal , Glicemia/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo , HDL-Colesterol/sangue , Dieta Baseada em Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa