Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Hered ; 110(6): 641-650, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31102441

RESUMO

The South China tiger (Panthera tigris amoyensis) is endemic to China and also the most critically endangered subspecies of living tigers. It is considered extinct in the wild and only about 150 individuals survive in captivity to date, whose genetic heritage, however, is ambiguous and controversial. Here, we conducted an explicit genetic assessment of 92 studbook-registered South China tigers from 14 captive facilities using a subspecies-diagnostic system in the context of comparison with other voucher specimens to evaluate the genetic ancestry and level of distinctiveness of the last surviving P. t. amoyensis. Three mtDNA haplotypes were identified from South China tigers sampled in this study, including a unique P. t. amoyensis AMO1 haplotype not found in other subspecies, a COR1 haplotype that is widespread in Indochinese tigers (P. t. corbetti), and an ALT haplotype that is characteristic of Amur tigers (P. t. altaica). Bayesian STRUCTURE analysis and parentage verification confirmed the verified subspecies ancestry (VSA) as the South China tiger in 74 individuals. Genetic introgression from other tigers was detected in 18 tigers, and subsequent exclusion of these and their offspring from the breeding program is recommended. Both STRUCTURE clustering and microsatellite-based phylogenetic analyses demonstrated a close genetic association of the VSA South China tigers to Indochinese tigers, an issue that could only be elucidated by analysis of historical South China tiger specimens with wild origin. Our results also indicated a moderate level of genetic diversity in the captive South China tiger population, suggesting a potential for genetic restoration.


Assuntos
Patrimônio Genético , Genética Populacional , Tigres/genética , Animais , Cruzamento , China , DNA Mitocondrial/genética , Variação Genética , Haplótipos , Repetições de Microssatélites , Linhagem , Filogenia , Tigres/classificação
2.
Genes (Basel) ; 15(4)2024 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-38674333

RESUMO

There is an urgent need to find a way to improve the genetic diversity of captive South China tiger (SCT, Panthera tigris amoyensis), the most critically endangered taxon of living tigers, facing inbreeding depression. The genomes showed that 13 hybrid SCTs from Meihuashan were divided into two groups; one group included three individuals who had a closer relationship with pureblood SCTs than another group. The three individuals shared more that 40% of their genome with pureblood SCTs and might be potential individuals for genetic rescuing in SCTs. A large-scale genetic survey based on 319 pureblood SCTs showed that the mean microsatellite inbreeding coefficient of pureblood SCTs decreased significantly from 0.1789 to 0.0600 (p = 0.000009) and the ratio of heterozygous loci increased significantly from 38.5% to 43.2% (p = 0.02) after one individual of the Chongqing line joined the Suzhou line and began to breed in the mid-1980s, which is a reason why the current SCTs keep a moderate level of microsatellite heterozygosity and nucleotide diversity. However, it is important to establish a back-up population based on the three individuals through introducing one pureblood SCT into the back-up population every year. The back-up population should be an important reserve in case the pureblood SCTs are in danger in the future.


Assuntos
Espécies em Perigo de Extinção , Repetições de Microssatélites , Tigres , Tigres/genética , Animais , Repetições de Microssatélites/genética , China , Variação Genética , Endogamia , Feminino , Masculino , Conservação dos Recursos Naturais/métodos , Cruzamento
3.
Mol Biol Rep ; 38(7): 4257-64, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21110106

RESUMO

In order to investigate the mitochondrial genome of Panthera tigris amoyensis, two South China tigers (P25 and P27) were analyzed following 15 cymt-specific primer sets. The entire mtDNA sequence was found to be 16,957 bp and 17,001 bp long for P25 and P27 respectively, and this difference in length between P25 and P27 occurred in the number of tandem repeats in the RS-3 segment of the control region. The structural characteristics of complete P. t. amoyensis mitochondrial genomes were also highly similar to those of P. uncia. Additionally, the rate of point mutation was only 0.3% and a total of 59 variable sites between P25 and P27 were found. Out of the 59 variable sites, 6 were located in 6 different tRNA genes, 6 in the 2 rRNA genes, 7 in non-coding regions (one located between tRNA-Asn and tRNA-Tyr and six in the D-loop), and 40 in 10 protein-coding genes. COI held the largest amount of variable sites (9 sites) and Cytb contained the highest variable rate (0.7%) in the complete sequences. Moreover, out of the 40 variable sites located in 10 protein-coding genes, 12 sites were nonsynonymous.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Tigres/genética , Animais , Composição de Bases/genética , Sequência de Bases , Núcleo Celular/genética , China , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa