Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 283(1830)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27147101

RESUMO

Disturbance is key to maintaining species diversity in plant communities. Although the effects of disturbance frequency and extent on species diversity have been studied, we do not yet have a mechanistic understanding of how these aspects of disturbance interact with spatial structure of disturbance to influence species diversity. Here we derive a novel pair approximation model to explore competitive outcomes in a two-species system subject to spatially correlated disturbance. Generally, spatial correlation in disturbance favoured long-range dispersers, while distance-limited dispersers were greatly suppressed. Interestingly, high levels of spatial aggregation of disturbance promoted long-term species coexistence that is not possible in the absence of disturbance, but only when the local disperser was intrinsically competitively superior. However, spatial correlation in disturbance led to different competitive outcomes, depending on the disturbed area. Concerning ecological conservation and management, we theoretically demonstrate that introducing a spatially correlated disturbance to the system or altering an existing disturbance regime can be a useful strategy either to control species invasion or to promote species coexistence. Disturbance pattern analysis may therefore provide new insights into biodiversity conservation.


Assuntos
Biodiversidade , Ecossistema , Modelos Teóricos , Plantas , Dinâmica Populacional
2.
J Theor Biol ; 359: 184-91, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24937800

RESUMO

Opinions differ on how the spatial distribution of species over space affects species coexistence. Here, we constructed both mean-field and pair approximation (PA) models to explore the effects of interspecific and intraspecific interactions and dispersal modes on species coexistence. We found that spatial structure resulting from species dispersal traits and neighboring interactions in PA model did not promote coexistence if two species had the same traits, though it might intensify the contact frequency of intraspecific competition. If two species adopt different dispersal modes, the spatial structure in PA would make the coexistence or founder control less likely since it alters the species effective birth rate. This suggests that the spatial distribution caused by neighboring interactions and local dispersal does not affect species coexistence unless it adequately alters the effective birth rate for two species. Besides, we modeled how the initial densities and patterns affected population dynamics and revealed how the final spatial pattern was generated.


Assuntos
Distribuição Animal , Ecossistema , Comportamento Social , Animais , Demografia , Humanos , Relações Interpessoais , Modelos Teóricos , Dinâmica Populacional , Especificidade da Espécie
3.
PLoS One ; 17(1): e0263290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100326

RESUMO

Soil spatial heterogeneity involves nutrients being patchily distributed at a range of scales and is prevalent in natural habitats. However, little is known about the effect of soil spatial configurations at the small scale on plant foraging behavior and plant growth under different resource amounts. Here, we experimentally investigated how a stoloniferous species, Trifolium repens, responded to varied resource amounts and spatial configuration combinations. Plant foraging behavior (i.e., the orientation of the primary stolon, mean length of the primary stolon, foraging precision, and foraging scale) and plant growth (i.e., total biomass, root biomass, shoot biomass, and root/shoot) were compared among differently designed configurations of soil resources in different amounts. The relationships of foraging behavior and plant biomass were analyzed. The results showed that the effect of the spatial configuration of soil resources on Trifolium repens depended on the resource amount. Specifically, when the total resource amount was low, fragmented soil patches promoted root foraging and increased Trifolium repens plant biomass; however, when the total resource amount was high, the soil spatial configuration did not affect foraging behavior or plant growth. Our results also showed that plant growth was facilitated by root foraging scale to adapt to low resource amounts. We conclude that the spatial configuration of soil resources at small scales affects whole plant growth, which is mediated by a distinct foraging strategy. These findings contribute to a better understanding of how the growth strategy of clonal plants responds to heterogeneous environments caused by different resource amounts and its spatial configurations.


Assuntos
Solo , Trifolium/fisiologia , Biomassa , Desenvolvimento Vegetal
4.
Plants (Basel) ; 10(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34579383

RESUMO

Accelerating and severe wetland loss has made wetland restoration increasingly important. Current wetland restorations do not take into consideration the ecological adaptability of wetland plants at large scales, which likely affects their long-term restoration success. We explored the ecological adaptability, including plant life forms and phylogenetic diversity, of plants across 28 wetlands in China. We found that perennial herbs were more common than annual herbs, with the proportion of perennial herbs accounting for 40-50%, 45-65%, 45-70%, 50-60%, and 60-80% of species in coastal wetlands, human-made wetlands, lake wetlands, river wetlands, and marsh wetlands, respectively. A ranking of phylogenetic diversity indices (PDIs) showed an order of marsh < river < coastal < lake < human-made, meaning that human-made wetlands had the highest phylogenetic diversity and marsh wetlands had the lowest phylogenetic diversity. The nearest taxon index (NTI) was positive in 23 out of 28 wetlands, indicating that species were phylogenetically clustered in wetland habitats. Dominant species tended to be distantly related to non-dominant species, as were alien invasive species and native species. Our study indicated that annual herbs and perennial herbs were found in different proportions in different types of wetlands and that species were phylogenetically clustered in wetland habitats. To improve wetland restoration, we suggest screening for native annual herbs and perennial herbs in proportions that occur naturally and the consideration of the phylogenetic similarity to dominant native species.

5.
Plants (Basel) ; 10(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834604

RESUMO

Invasive species are a subset of naturalized species, and naturalized species are a subset of alien species. Determining the relationship among these three assemblages would be helpful in predicting and preventing biological invasion. Here, we reviewed the families, lifeforms, origins, introduction pathways and phylogenetic diversity of alien, naturalized and invasive vascular plants in China. The results show that species in the Asteraceae, Fabaceae and Poaceae families had a high dominance among alien, naturalized and invasive species. Moreover, almost all alien species in the Amaranthaceae, Solanaceae, Convolvulaceae and Euphorbiaceae families became naturalized species, and about 26.7% of the naturalized species became invasive species. Perennial herbs comprised a higher proportion of alien species than did annual herbs, though annual herbs were more suited to becoming invasive than perennial herbs. A considerable proportion (57.8%) of invasive species were introduced from America. More than half (56.5%) of alien species were introduced for their ornamental value, and half of these have become naturalized in China. Moreover, about half (55.2%) of all invasive species were introduced for their economic value (including ornamental, foraging and medicinal purposes). Invasive species were phylogenetically clustered and phylogenetically distant from alien and naturalized species, which indicates that phylogenetic differences could be helpful in becoming invasive. There is no doubt that human activity plays a significant role in biological invasion. This study suggests that when introducing alien species to a region, decision-makers should certainly consider the species' phylogeny, beyond just its fundamental characteristics.

6.
Ecol Evol ; 7(16): 6284-6291, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28861232

RESUMO

Masting is defined as the intermittent highly variable production of seed in a plant population. According to reproductive modes, that is, sexual and asexual reproduction, masting species can be separated into three groups, that is, (1) species, for example, bamboo, flower only once before they die; (2) species, for example, Fagus, reproduce sexually; and (3) species, for example, Stipa tenacissima, reproduce both sexually and asexually. Several theories have been proposed to explore the underlying mechanisms of masting. However, to our knowledge, no theory has been found to explain the mechanism of masting species that reproduce both sexually and asexually. Here we refine the Resource Budget Model by considering a trade-off between sexual and asexual reproduction. Besides the depletion efficient (i.e., the ratio of the cost of seed setting and the cost of flowering), other factors, such as the annual remaining resource (i.e., the rest of the resource from the photosynthetic activity after allocating to growth and maintenance), the trade-off between sexual and asexual reproduction, and the reproductive thresholds, also affect masting. Moreover, two potential reproductive strategies are found to explain the mechanisms: (1) When the annual remaining resource is relatively low, plants reproduce asexually and a part of the resource is accumulated as the cost of asexual reproduction is less than the annual remaining resource. Plants flower and set fruits once the accumulated resource exceeds the threshold of sexual reproduction; (2) when the annual remaining resource is relatively high, and the accumulated resource surpasses the threshold of sexual reproduction, masting occurs. Remarkably, under certain depletion efficient, more investigation in sexual reproduction will lead plants to reproduce periodically. Additionally, plants investigate less resource to reproduce periodically when depletion efficient keeps increasing as plants can reproduce efficiently. Overall, our study provides new insights into the interpretation of masting, especially for species that reproduce both sexually and asexually.

7.
Sci Rep ; 6: 33100, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27608823

RESUMO

Habitat destruction, a key determinant of species loss, can be characterized by two components, patch loss and patch fragmentation, where the former refers to the reduction in patch availability, and the latter to the division of the remaining patches. Classical metacommunity models have recently explored how food web dynamics respond to patch loss, but the effects of patch fragmentation have largely been overlooked. Here we develop an extended patch-dynamic model that tracks the patch occupancy of the various trophic links subject to colonization-extinction-predation dynamics by incorporating species dispersal with patch connectivity. We found that, in a simple food chain, species at higher trophic level become extinct sooner with increasing patch loss and fragmentation due to the constraint in resource availability, confirming the trophic rank hypothesis. Yet, effects of fragmentation on species occupancy are largely determined by patch loss, with maximal fragmentation effects occurring at intermediate patch loss. Compared to the spatially explicit simulations that we also performed, the current model with pair approximation generates similar community patterns especially in spatially clustered landscapes. Overall, our extended framework can be applied to model more complex food webs in fragmented landscapes, broadening the scope of existing metacommunity theory.


Assuntos
Cadeia Alimentar , Modelos Biológicos
8.
Sci Rep ; 5: 15455, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26482293

RESUMO

The spatial correlation of disturbance is gaining attention in landscape ecology, but knowledge is still lacking on how species traits determine extinction thresholds under spatially correlated disturbance regimes. Here we develop a pair approximation model to explore species extinction risk in a lattice-structured landscape subject to aggregated periodic disturbance. Increasing disturbance extent and frequency accelerated population extinction irrespective of whether dispersal was local or global. Spatial correlation of disturbance likewise increased species extinction risk, but only for local dispersers. This indicates that models based on randomly simulated disturbances (e.g., mean-field or non-spatial models) may underestimate real extinction rates. Compared to local dispersal, species with global dispersal tolerated more severe disturbance, suggesting that the spatial correlation of disturbance favors long-range dispersal from an evolutionary perspective. Following disturbance, intraspecific competition greatly enhanced the extinction risk of distance-limited dispersers, while it surprisingly did not influence the extinction thresholds of global dispersers, apart from decreasing population density to some degree. As species respond differently to disturbance regimes with different spatiotemporal properties, different regimes may accommodate different species.


Assuntos
Extinção Biológica , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa