Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 121(6): 1137-1149, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29394303

RESUMO

Background and Aims: Studies have indicated that plant stomatal conductance (gs) decreases in response to elevated atmospheric CO2, a phenomenon of significance for the global hydrological cycle. However, gs increases across certain CO2 ranges have been predicted by optimization models. The aim of this work was to demonstrate that under certain environmental conditions, gs can increase in response to elevated CO2. Methods: Using (1) an extensive, up-to-date synthesis of gs responses in free air CO2 enrichment (FACE)experiments, (2) in situ measurements across four biomes showing dynamic gs responses to a CO2 rise of ~50 ppm (characterizing the change in this greenhouse gas over the past three decades) and (3) a photosynthesis-stomatal conductance model, it is demonstrated that gs can in some cases increase in response to increasing atmospheric CO2. Key Results: Field observations are corroborated by an extensive synthesis of gs responses in FACE experiments showing that 11.8 % of gs responses under experimentally elevated CO2 are positive. They are further supported by a strong data-model fit (r2 = 0.607) using a stomatal optimization model applied to the field gs dataset. A parameter space identified in the Farquhar-Ball-Berry photosynthesis-stomatal conductance model confirms field observations of increasing gs under elevated CO2 in hot dry conditions. Contrary to the general assumption, positive gs responses to elevated CO2, although relatively rare, are a feature of woody taxa adapted to warm, low-humidity conditions, and this response is also demonstrated in global simulations using the Community Land Model (CLM4). Conclusions: The results contradict the over-simplistic notion that global vegetation always responds with decreasing gs to elevated CO2, a finding that has important implications for predicting future vegetation feedbacks on the hydrological cycle at the regional level.


Assuntos
Dióxido de Carbono/metabolismo , Estômatos de Plantas , Transpiração Vegetal , Ecossistema , Modelos Teóricos , Fotossíntese , Estômatos de Plantas/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos
2.
Ann Bot ; 119(8): 1385-1395, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334286

RESUMO

Background and Aims: Fluctuations in [CO 2 ] have been widely studied as a potential driver of plant evolution; however, the role of a fluctuating [O 2 ]:[CO 2 ] ratio is often overlooked. The present study aimed to investigate the inherent physiological plasticity of early diverging, extant species following acclimation to an atmosphere similar to that across the Triassic-Jurassic mass extinction interval (TJB, approx. 200 Mya), a time of major ecological change. Methods: Mature plants from two angiosperm ( Drimys winteri and Chloranthus oldhamii ), two monilophyte ( Osmunda claytoniana and Cyathea australis ) and one gymnosperm ( Ginkgo biloba ) species were grown for 2 months in replicated walk-in Conviron BDW40 chambers running at TJB treatment conditions of 16 % [O 2 ]-1900 ppm [CO 2 ] and ambient conditions of 21 % [O 2 ]-400 ppm [CO 2 ], and their physiological plasticity was assessed using gas exchange and chlorophyll fluorescence methods. Key Results: TJB acclimation caused significant reductions in the maximum rate of carboxylation ( V Cmax ) and the maximum electron flow supporting ribulose-1,5-bisphosphate regeneration ( J max ) in all species, yet this downregulation had little effect on their light-saturated photosynthetic rate ( A sat ). Ginkgo was found to photorespire heavily under ambient conditions, while growth in low [O 2 ]:[CO 2 ] resulted in increased heat dissipation per reaction centre ( DI o / RC ), severe photodamage, as revealed by the species' decreased maximum efficiency of primary photochemistry ( F v / F m ) and decreased in situ photosynthetic electron flow ( Jsitu ). Conclusions: It is argued that the observed photodamage reflects the inability of Ginkgo to divert excess photosynthetic electron flow to sinks other than the downregulated C 3 and the diminished C 2 cycles under low [O 2 ]:[CO 2 ]. This finding, coupled with the remarkable physiological plasticity of the ferns, provides insights into the underlying mechanism of Ginkgoales' near extinction and ferns' proliferation as atmospheric [CO 2 ] increased to maximum levels across the TJB.


Assuntos
Atmosfera , Dióxido de Carbono/química , Gleiquênias/fisiologia , Ginkgo biloba/fisiologia , Oxigênio/química , Fotossíntese , Evolução Biológica , Extinção Biológica , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa