Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 11(9): e0162742, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27611332

RESUMO

Group A Streptococcus (GAS) causes diverse infections ranging from common pharyngitis to rare severe invasive infections. Invasive GAS isolates can have natural mutations in the virulence regulator CovRS, which result in enhanced expression of multiple virulence genes, suppressed the expression of the protease SpeB, and increased virulence. It is believed that CovRS mutations arise during human infections with GAS carrying wild-type CovRS and are not transmissible. CovRS mutants of invasive GAS of the emm1 genotype arise readily during experimental infection in mice. It is possible that invasive GAS arises from pharyngeal GAS through rare genetic mutations that confer the capacity of mutated GAS to acquire covRS mutations during infection. The objective of this study was to determine whether contemporary pharyngeal emm1 GAS isolates have a reduced propensity to acquire CovRS mutations in vivo compared with invasive emm1 GAS and whether emm3, emm12, and emm28 GAS acquire CovRS mutants in mouse infection. The propensity of invasive and pharyngeal emm1 and invasive emm3, emm12, and emm28 SpeBA+ isolates to acquire variants with the SpeBA- phenotype was determined during subcutaneous infection of mice. The majority of both invasive and pharyngeal emm1 SpeBA+ isolates and two of three emm12 isolates, but not emm3 and emm28 isolates, were found to acquire SpeBA- variants during skin infection in mice. All analyzed SpeBA- variants of emm1 and emm12 GAS from the mouse infection acquired covRS mutations and produced more platelet-activating factor acetylhydrolase SsE. Thus, contemporary invasive and pharyngeal emm1 GAS isolates and emm12 GAS have a similar capacity to acquire covRS mutations in vivo. The rarity of severe invasive infections caused by GAS does not appear to be attributable to a reduced ability of pharyngeal isolates to acquire CovRS mutations.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Mutação/genética , Faringe/microbiologia , Streptococcus pyogenes/isolamento & purificação , Streptococcus pyogenes/metabolismo , Alelos , Animais , Feminino , Genótipo , Camundongos Endogâmicos C57BL , Faringe/patologia , Fenótipo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/genética , Tela Subcutânea/microbiologia , Tela Subcutânea/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa