Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 341(2): 207-17, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26854693

RESUMO

Human hepatocytes are extensively needed in drug discovery and development. Stem cell-derived hepatocytes are expected to be an improved and continuous model of human liver to study drug candidates. Generation of endoderm-derived hepatocytes from human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, is a complex, challenging process requiring specific signals from soluble factors and insoluble matrices at each developmental stage. In this study, we used human liver progenitor HepaRG-derived acellular matrix (ACM) as a hepatic progenitor-specific matrix to induce hepatic commitment of hPSC-derived definitive endoderm (DE) cells. The DE cells showed much better attachment to the HepaRG ACM than other matrices tested and then differentiated towards hepatic cells, which expressed hepatocyte-specific makers. We demonstrate that Matrigel overlay induced hepatocyte phenotype and inhibited biliary epithelial differentiation in two hPSC lines studied. In conclusion, our study demonstrates that the HepaRG ACM, a hepatic progenitor-specific matrix, plays an important role in the hepatic differentiation of hPSCs.


Assuntos
Diferenciação Celular/fisiologia , Hepatócitos/citologia , Fígado/citologia , Células-Tronco Pluripotentes/citologia , Técnicas de Cultura de Células , Endoderma/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos
2.
Biomaterials ; 103: 86-100, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27372423

RESUMO

Human pluripotent stem cells (hPSCs) have gained a solid foothold in basic research and drug industry as they can be used in vitro to study human development and have potential to offer limitless supply of various somatic cell types needed in drug development. Although the hepatic differentiation of hPSCs has been extensively studied, only a little attention has been paid to the role of the extracellular matrix. In this study we used laminin-511, laminin-521, and fibronectin, found in human liver progenitor cells, as culture matrices for hPSC-derived definitive endoderm cells. We observed that laminin-511 and laminin-521 either alone or in combination support the hepatic specification and that fibronectin is not a vital matrix protein for the hPSC-derived definitive endoderm cells. The expression of the laminin-511/521-specific integrins increased during the definitive endoderm induction and hepatic specification. The hepatic cells differentiated on laminin matrices showed the upregulation of liver-specific markers both at mRNA and protein levels, secreted human albumin, stored glycogen, and exhibited cytochrome P450 enzyme activity and inducibility. Altogether, we found that laminin-511 and laminin-521 can be used as stage-specific matrices to guide the hepatic specification of hPSC-derived definitive endoderm cells.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Hepatócitos/citologia , Hepatócitos/fisiologia , Laminina/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Materiais Biomiméticos/química , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Engenharia Tecidual/métodos
3.
ACS Nano ; 10(4): 3886-99, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-26978483

RESUMO

Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.


Assuntos
Vesículas Extracelulares/fisiologia , Animais , Comunicação Celular , Micropartículas Derivadas de Células/fisiologia , Ensaios Clínicos como Assunto , Sistemas de Liberação de Medicamentos , Exossomos/fisiologia , Humanos , Nanomedicina , Nanomedicina Teranóstica
4.
Biomaterials ; 51: 257-269, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25771016

RESUMO

The environmental cues received by the cells from synthetic substrates in vitro are very different from those they receive in vivo. In this study, we applied the Langmuir-Schaefer (LS) deposition, a variant of Langmuir-Blodgett technique, to fabricate a biomimetic microenvironment mimicking the structure and organization of native Bruch's membrane for the production of the functional human embryonic stem cell derived retinal pigment epithelial (hESC-RPE) cells. Surface pressure-area isotherms were measured simultaneously with Brewster angle microscopy to investigate the self-assembly of human collagens type I and IV on air-subphase interface. Furthermore, the structure of the prepared collagen LS films was characterized with scanning electron microscopy, atomic force microscopy, surface plasmon resonance measurements and immunofluorescent staining. The integrity of hESC-RPE on double layer LS films was investigated by measuring transepithelial resistance and permeability of small molecular weight substance. Maturation and functionality of hESC-RPE cells on double layer collagen LS films was further assessed by RPE-specific gene and protein expression, growth factor secretion, and phagocytic activity. Here, we demonstrated that the prepared collagen LS films have layered structure with oriented fibers corresponding to architecture of the uppermost layers of Bruch's membrane and result in increased barrier properties and functionality of hESC-RPE cells as compared to the commonly used dip-coated controls.


Assuntos
Materiais Biomiméticos/farmacologia , Microambiente Celular/efeitos dos fármacos , Colágeno Tipo IV/farmacologia , Colágeno Tipo I/farmacologia , Células-Tronco Pluripotentes/citologia , Epitélio Pigmentado da Retina/citologia , Proliferação de Células/efeitos dos fármacos , Humanos , Microscopia de Força Atômica , Nanoestruturas/química , Células-Tronco Pluripotentes/efeitos dos fármacos , Pressão , Epitélio Pigmentado da Retina/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Temperatura
5.
Biomaterials ; 35(19): 5110-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24698520

RESUMO

Physiologically relevant hepatic cell culture models must be based on three-dimensional (3D) culture of human cells. However, liver cells are generally cultured in two-dimensional (2D) format that deviates from the normal in vivo morphology. We generated 3D culture environment for HepaRG liver progenitor cells using wood-derived nanofibrillar cellulose (NFC) and hyaluronan-gelatin (HG) hydrogels. Culture of undifferentiated HepaRG cells in NFC and HG hydrogels induced formation of 3D multicellular spheroids with apicobasal polarity and functional bile canaliculi-like structures, structural hallmarks of the liver tissue. Furthermore, hepatobiliary drug transporters, MRP2 and MDR1, were localized on the canalicular membranes of the spheroids and vectorial transport of fluorescent probes towards the biliary compartment was demonstrated. Cell culture in 3D hydrogel supported the mRNA expression of hepatocyte markers (albumin and CYP3A4), and metabolic activity of CYP3A4 in the HepaRG cell cultures. On the contrary, the 3D hydrogel cultures with pre-differentiated HepaRG cells showed decreasing expression of albumin and CYP3A4 transcripts as well as CYP3A4 activity. It is concluded that NFC and HG hydrogels expedite the hepatic differentiation of HepaRG liver progenitor cells better than the standard 2D culture environment. This was shown as improved cell morphology, expression and localization of hepatic markers, metabolic activity and vectorial transport. The NFC and HG hydrogels are promising materials for hepatic cell culture and tissue engineering.


Assuntos
Diferenciação Celular/fisiologia , Celulose/química , Gelatina/química , Ácido Hialurônico/química , Fígado/citologia , Nanofibras/química , Células-Tronco/citologia , Adolescente , Adulto , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Pré-Escolar , Feminino , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa