Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338926

RESUMO

Gold nanoshells have been actively applied in industries beyond the research stage because of their unique optical properties. Although numerous methods have been reported for gold nanoshell synthesis, the labor-intensive and time-consuming production process is an issue that must be overcome to meet industrial demands. To resolve this, we report a high-throughput synthesis method for nanogap-rich gold nanoshells based on a core silica support (denoted as SiO2@Au NS), affording a 50-fold increase in scale by combining it with a dual-channel infusion pump system. By continuously dropping the reactant solution through the pump, nanoshells with closely packed Au nanoparticles were prepared without interparticle aggregation. The thickness of the gold nanoshells was precisely controlled at 2.3-17.2 nm by regulating the volume of the reactant solution added dropwise. Depending on the shell thickness, the plasmonic characteristics of SiO2@Au NS prepared by the proposed method could be tuned. Moreover, SiO2@Au NS exhibited surface-enhanced Raman scattering activity comparable to that of gold nanoshells prepared by a previously reported low-throughput method at the same reactant ratio. The results indicate that the proposed high-throughput synthesis method involving the use of a dual-channel infusion system will contribute to improving the productivity of SiO2@Au NS with tunable plasmonic characteristics.


Assuntos
Nanopartículas Metálicas , Nanoconchas , Ouro , Dióxido de Silício
2.
Biosensors (Basel) ; 14(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920576

RESUMO

Surface-enhanced Raman spectroscopy (SERS) tagging using silica(SiO2)@Ag nanoparticles (NPs) is easy to handle and is being studied in various fields, including SERS imaging and immunoassays. This is primarily due to its structural advantages, characterized by high SERS activity. However, the Ag NPs introduced onto the SiO2 surface may undergo structural transformation owing to the Ostwald ripening phenomenon under various conditions. As a result, the consistency of the SERS signal decreases, reducing their usability as SERS substrates. Until recently, research has been actively conducted to improve the stability of single Ag NPs. However, research on SiO2@Ag NPs used as a SERS-tagging material is still lacking. In this study, we utilized a Raman labeling compound (RLC) to prevent the structural deformation of SiO2@Ag NPs under various conditions and proposed excellent SiO2@Ag@RLC-Pre NPs as a SERS-tagging material. Using various RLCs, we confirmed that 4-mercaptobenzoic acid (4-MBA) is the RLC that maintains the highest stability for 2 months. These results were also observed for the SiO2@Ag NPs, which were unstable under various pH and temperature conditions. We believe that SERS tags using SiO2@Ag NPs and 4-MBA can be utilized in various applications on based SERS because of the high stability and consistency of the resulting SERS signal.


Assuntos
Nanopartículas Metálicas , Dióxido de Silício , Prata , Análise Espectral Raman , Dióxido de Silício/química , Prata/química , Nanopartículas Metálicas/química , Propriedades de Superfície , Compostos de Sulfidrila/química , Benzoatos/química
3.
Nanomaterials (Basel) ; 14(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38334538

RESUMO

Recently, silica nanoparticles (NPs) have attracted considerable attention as biocompatible and stable templates for embedding noble metals. Noble-metal-embedded silica NPs utilize the exceptional optical properties of novel metals while overcoming the limitations of individual novel metal NPs. In addition, the structure of metal-embedded silica NPs decorated with small metal NPs around the silica core results in strong signal enhancement in localized surface plasmon resonance and surface-enhanced Raman scattering. This review summarizes recent studies on metal-embedded silica NPs, focusing on their unique designs and applications. The characteristics of the metal-embedded silica NPs depend on the type and structure of the embedded metals. Based on this progress, metal-embedded silica NPs are currently utilized in various spectroscopic applications, serving as nanozymes, detection and imaging probes, drug carriers, photothermal inducers, and bioactivation molecule screening identifiers. Owing to their versatile roles, metal-embedded silica NPs are expected to be applied in various fields, such as biology and medicine, in the future.

4.
Nanomaterials (Basel) ; 13(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513156

RESUMO

Nanoparticles (NP) with optical properties embedded silica particles have been widely used in various fields because of their unique properties. The surfaces of optical NPs have been modified with various organic ligands to maintain their unique optical properties and colloidal stability. Among the surface modification methods, silica encapsulation of optical NPs is widely used to enhance their biocompatibility and stability. However, in the case of NPs with hydrophobic ligands on the surface, the ligands that determine the optical properties of the NPs may detach from the NPs, thereby changing the optical properties during silica encapsulation. Herein, we report a generally applicable silica encapsulation method using trimethoxy(2-phenylethyl)silane (TMPS) for non-hydrophilic optical NPs, such as quantum dots (QDs) and gold NPs. This silica encapsulation method was applied to fabricate multiple silica-encapsulated QD-embedded silica NPs (SiO2@QD@SiO2 NPs; QD2) and multiple silica-encapsulated gold NP-embedded silica NPs labeled with 2-naphthalene thiol (SiO2@Au2-NT@SiO2). The fabricated silica-encapsulated NPs exhibited optical properties without significant changes in the quantum yield or Raman signal intensity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa