Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 12(2): 1569-72, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22630002

RESUMO

The doping behavior of single-walled carbon nanotubes (SWCNTs) was investigated with an emphasis on the control of the conformation of sodium dodecylbenzene sulfonate (NaDDBS) with sulfonate groups acting as an electro-withdrawing group. The conformation of adsorbed NaDDBS on SWCNTs was controlled as a function of the amount of NaDDBS. The doping behavior of SWCNTs was significantly affected by the dosing amount of NaDDBS due to the conformational change of NaDDBS adsorbed on the SWCNT surface, which affected the spatial distance between the SWCNT surface and the sulfonate groups in NaDDBS. At a higher concentration, the spatial distance between the sulfonate group in NaDDBS and SWCNT was not sufficiently close enough to dope SWCNT due to the repulsive forces between the sulfonate groups in NaDDBS. Alternatively, at a lower concentration, NaDDBS acted as a p-type dopant for SWCNTs. To this end, this paper demonstrates a new tendency of doping that is related to the adsorbed behavior of a dispersant.

2.
J Nanosci Nanotechnol ; 11(7): 6126-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121671

RESUMO

We have fabricated hexagonal close-packed (hcp) Ni nanoparticles covered by a face-centered cubic (fcc) Ni surface layer by polyol method. The magnetic properties have been investigated as a function of temperature and applied magnetic field. The magnetic behavior reveals that the system should be divided magnetically into three distinct phases with different origins. The fcc Ni phase on the shell contributes to the superparamagnetism through a wide temperature range up to 360 K. The hcp Ni phase at the core is associated with antiferromagnetic nature below 12 K. These observations are in good agreement with the X-ray absorption spectroscopy and magnetic circular dichroism measurements. In our particular case, the unique hcp core and fcc shell structure gives rise to an additional anomaly at 20 K in the zero-field-cooled magnetization curve. Its position is barely affected by the magnetic field but its structure disappears above 30 kOe, showing a metamagnetic transition in the magnetization versus magnetic field curve. This new phase originates from the magnetic exchange at the interface between the hcp and fcc Ni sublattices.

3.
J Am Chem Soc ; 132(44): 15603-9, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20945893

RESUMO

It is essential to control the electronic structure of graphene in order to apply graphene films for use in electrodes. We have introduced chemical dopants that modulate the electronic properties of few-layer graphene films synthesized by chemical vapor deposition. The work function, sheet carrier density, mobility, and sheet resistance of these films were systematically modulated by the reduction potential values of dopants. We further demonstrated that the power generation of a nanogenerator was strongly influenced by the choice of a graphene electrode with a modified work function. The off-current was well quenched in graphene films with high work functions (Au-doped) due to the formation of high Schottky barrier heights, whereas leakage current was observed in graphene films with low work functions (viologen-doped), due to nearly ohmic contact.

4.
J Am Chem Soc ; 130(8): 2610-6, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18251473

RESUMO

Chlorine oxoanions with the chlorine atom at different oxidation states were introduced in an attempt to systematically tailor the electronic structures of single-walled carbon nanotubes (SWCNTs). The degree of selective oxidation was controlled systematically by the different oxidation state of the chlorine oxoanion. Selective suppression of the metallic SWCNTs with a minimal effect on the semiconducting SWCNTs was observed at a high oxidation state. The adsorption behavior and charge transfer at a low oxidation state were in contrast to that observed at a high oxidation state. Density functional calculations demonstrated the chemisorption of chloro oxoanions at the low oxidation state and their physisorption at high oxidation states. These results concurred with the experimental observations from X-ray photoelectron spectroscopy. The sheet resistance of the SWCNT film decreased significantly at high oxidation states, which was explained in terms of a p-doping phenomenon that is controlled by the oxidation state.

5.
J Am Chem Soc ; 130(6): 2062-6, 2008 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-18205362

RESUMO

Various electron-donating and -withdrawing groups in aromatic and aliphatic backbones of solvent have been introduced to tailor the electronic structures of single-walled carbon nanotubes (SWCNTs). In the case of solvent with a withdrawing group, electrons were extracted mainly from metallic SWCNTs, whereas small charge transfer was also observed in semiconducting SWCNTs. On the other hand, in the case of solvent with a donating group, electrons were donated to both metallic and semiconducting SWCNTs. This effect was less prominent in solvent with an aliphatic backbone than that with an aromatic backbone. The strong correlation between the sheet resistance and electronic structures of nanotubes is further discussed in conjunction with a modulation of Schottky barrier height.


Assuntos
Elétrons , Nanotubos de Carbono/química , Fenômenos Químicos , Físico-Química , Solventes/química , Espectrofotometria , Raios X
6.
J Am Chem Soc ; 130(38): 12757-61, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18729358

RESUMO

We investigated the modulation of optical properties of single-walled carbon nanotubes (SWCNTs) by AuCl 3 doping. The van Hove singularity transitions (E 11 (S), E 22 (S), E 11 (M)) in absorption spectroscopy disappeared gradually with an increasing doping concentration and a new peak appeared at a high doping concentration. The work function was downshifted up to 0.42 eV by a strong charge transfer from the SWCNTs to AuCl 3 by a high level of p-doping. We propose that this large work function shift forces the Fermi level of the SWCNTs to be located deep in the valence band, i.e., highly degenerate, creating empty van Hove singularity states, and hence the work function shift invokes a new asymmetric transition in the absorption spectroscopy from a deeper level to newly generated empty states.

7.
J Nanosci Nanotechnol ; 7(12): 4285-93, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18283805

RESUMO

Monolayer arrays of monodispersed nanocrystals (<10 nm) onto three dimensional (3D) substrates have considerable potential for various engineering applications such as highly integrated memory devices, solar cells, biosensors and photo and electro luminescent displays because of their highly integrated features with nanocrystal homogeneity. However, most reports on nanocrystal arrays have focused on two dimensional (2D) flat substrates, and the production of wafer-scale monolayer arrays is still challenging. Here we address the feasibility of arraying nanocrystal monolayers in wafer-scale onto 3D substrates. We present both metal (Pd) and semiconductor (CdSe) nanocrystals arrayed in monolayer onto trenched silicon wafers (4 inch diameter) using a facile electrostatic adsorption scheme. In particular, CdSe nanocrystal arrays in the trench well showed superior luminescent efficiency compared to those onto the protruded trench flat, due to the densely arrayed CdSe nanocrystals in the vertical direction. Furthermore, the surface coverage controllability was investigated using a 2D silicon substrate. Our approach can be applied to generate highly efficient displays, memory chips and integrated sensing devices.

8.
J Colloid Interface Sci ; 312(2): 265-71, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17482633

RESUMO

A dispersion technology for Ni particles suspended in a non-aqueous medium based on the quantitative evaluation of surface acid-base properties of Ni particles is described. A quantitative analysis of surface acid-base properties of Ni particles was performed using non-aqueous titration. Dimethylamino ethanol and acetic acid were used as probe molecules to detect surface acid-base amounts of Ni particles. The dispersion system was designed on the basis of the amounts of surface acid-base sites on the Ni particle surface. Rheological behavior and agglomerate particle size data demonstrate that the dispersion stability of the designed Ni suspension is markedly improved, as expected. Therefore, the design strategy to improve the dispersion stability of Ni particles was successful. This strategy is expected to be applicable to dispersion systems of other particles suspended in a non-aqueous medium.

9.
Science ; 342(6154): 91-5, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24092738

RESUMO

Graphene is a distinct two-dimensional material that offers a wide range of opportunities for membrane applications because of ultimate thinness, flexibility, chemical stability, and mechanical strength. We demonstrate that few- and several-layered graphene and graphene oxide (GO) sheets can be engineered to exhibit the desired gas separation characteristics. Selective gas diffusion can be achieved by controlling gas flow channels and pores via different stacking methods. For layered (3- to 10-nanometer) GO membranes, tunable gas transport behavior was strongly dependent on the degree of interlocking within the GO stacking structure. High carbon dioxide/nitrogen selectivity was achieved by well-interlocked GO membranes in high relative humidity, which is most suitable for postcombustion carbon dioxide capture processes, including a humidified feed stream.

10.
ACS Nano ; 6(8): 6803-11, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22765296

RESUMO

Three-dimensional (3D) structured graphene is a material of great interest due to its diverse applications in electronics, catalytic electrodes, and sensors. However, the preparation of 3D structured graphene is still challenging. Here, we report the fabrication of multilayer graphene balls (GBs) by template-directed carbon segregation using nickel nanoparticles (Ni-NPs) as template materials. To maintain the ball shape of the template Ni-NPs, we used a carburization process using polyol solution as the carbon source and a thermal annealing process to synthesize graphene layers via carbon segregation on the outer surface of the Ni-NPs. The resulting GBs were hollow structures composed of multilayer graphene after the removal of core Ni-NPs, and the thickness of the graphene layers and the size of GBs were tunable by controlling the graphene synthesis conditions. X-ray diffraction analysis and in situ transmission electron microscope characterization revealed that carbon atoms diffused effectively into the Ni-NPs during the carburization step, and that the diffused carbon atoms in Ni-NPs segregated and successfully formed a graphene layer on the surface of the Ni-NPs during thermal annealing. We also performed further heat treatment at high temperature to improve the quality of the graphene layer, resulting in highly crystalline GBs. The unique hollow GBs synthesized here will be useful as excellent high-rate electrode materials for electrochemical lithium storage devices.


Assuntos
Cristalização/métodos , Grafite/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanosferas/química , Nanosferas/ultraestrutura , Níquel/química , Carbono/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
11.
ACS Nano ; 5(2): 1353-9, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21261295

RESUMO

By using carbon-free inorganic atomic layer involving heat treatment from 150 to 300 °C, environmentally stable and permanent modulation of the electronic and electrical properties of single-walled carbon nanotubes (SWCNTs) from p-type to ambi-polar and possibly to n-type has been demonstrated. At low heat treatment temperature, a strong p-doping effect from Au(3+) ions to CNTs due to a large difference in reduction potential between them is dominant. However at higher temperature, the gold species are thermally reduced, and thermally induced CNT-Cl finally occurs by the decomposition reaction of AuCl(3). Thus, in the AuCl(3)-doped SWCNTs treated at higher temperature, the p-type doping effect is suppressed and an n-type property from CNT-Cl is thermally induced. Thermal conversion of the majority carrier type of AuCl(3)-doped SWNTs is systematically investigated by combining various optical and electrical tools.

12.
Nanotechnology ; 19(7): 075606, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-21817643

RESUMO

We report a novel one-step method for the preparation of hierarchically patterned Au nanoparticles in a conducting polymer matrix by controlling the interface properties between Au nanoparticles and the conducting polymer matrix. The terminal group of capping molecules for the Au nanoparticles was modified to change the interface properties, not to change the size of the Au nanoparticles which affects their intrinsic properties. By modulating the interface properties, it is possible to construct Au nanoparticle-conducting polymer composites with two different structures: one presents a triple layer in which the conducting polymer layer is sandwiched between Au nanoparticle layers at the top and bottom; the other exhibits a form like a raisin cake in which Au nanoparticles are homogeneously organized in the conducting polymer matrix. High-resolution transmission electron microscopy was used to study the morphology and patterning of Au nanoparticles in the conducting polymer matrix.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa