RESUMO
Yeast host-vector systems are useful tools for the production of recombinant proteins. Here, we report the construction of a new high-level expression plasmid pPAX1-neo for the basidiomycetous yeast, Pseudozyma antarctica. pPAX1-neo harbours a xylose-inducible expression cassette under control of the xylanase promoter and terminator of P. antarctica T-34, a selection cassette of neomycin/G418 with an Escherichia coli neomycin resistance gene under control of the homocitrate synthase promoter of strain T-34, and an autonomously replicating sequence fragment of Ustilago maydis (UARS). Biodegradable plastic (BP)-degrading enzymes of P. antarctica JCM10317 (PaE) and Paraphoma-related fungal strain B47-9 (PCLE) were used as reporter proteins and inserted into pPAX1-neo, resulting in pPAX1-neo::PaCLE1 and pPAX1-neo::PCLE, respectively. Homologous and heterologous BP-degrading enzyme production of transformants of P. antarctica T-34 were detected on agar plates containing xylose and emulsified BP. Recombinant PaE were also produced by transformants of other Pseudozyma strains including Pseudozyma aphidis, Pseudozyma rugulosa, and Pseudozyma tsukubaensis. To improve the stability of transformed genes in cells, the UARS fragment was removed from linearized pPAX1-neo::PaCLE1 and integrated into the chromosome of the P. antarctica strain, GB-4(0), which was selected as a PaE producer in xylose media. Two transformants, GB-4(0)-X14 and X49, had an 11-fold higher activity compared with the wild type strain in xylose-containing liquid media. By xylose fed-batch cultivation using a 3-L jar fermentor, GB-4(0)-X14 produced 73.5 U mL(-1) of PaE, which is 13.4-fold higher than that of the wild type strain GB-4(0), which produced 5.5 U mL(-1) of PaE.
Assuntos
Plásticos Biodegradáveis/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/biossíntese , Oxo-Ácido-Liases/metabolismo , Ustilaginales/enzimologia , Xilose/metabolismo , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental , Reatores Biológicos , Cromossomos Fúngicos/química , Cromossomos Fúngicos/metabolismo , Endo-1,4-beta-Xilanases/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas Fúngicas/genética , Expressão Gênica , Neomicina , Oxo-Ácido-Liases/genética , Plasmídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transgenes , Ustilaginales/genéticaRESUMO
Aerial plant surface (phylloplane) is a primary key habitat for many microorganisms but is generally recognized as limited in nutrient resources. Pseudozyma antarctica, a nonpathogenic yeast, is commonly isolated from plant surfaces and characterized as an esterase producer with fatty acid assimilation ability. In order to elucidate the biological functions of these esterases, culture filtrate with high esterase activity (crude enzyme) of P. antarctica was applied onto leaves of tomato and Arabidopsis. These leaves showed a wilty phenotype, which is typically associated with water deficiency. Furthermore, we confirmed that crude enzyme-treated detached leaves clearly lost their water-holding ability. In treated leaves of both plants, genes associated to abscisic acid (ABA; a plant stress hormone responding osmotic stress) were activated and accumulation of ABA was confirmed in tomato plants. Microscopic observation of treated leaf surfaces revealed that cuticle layer covering the aerial epidermis of leaves became thinner. A gas chromatography-mass spectrometry (GC-MS) analysis exhibited that fatty acids with 16 and 18 carbon chains were released in larger amounts from treated leaf surfaces, indicating that the crude enzyme has ability to degrade lipid components of cuticle layer. Among the three esterases detected in the crude enzyme, lipase A, lipase B, and P. antarctica esterase (PaE), an in vitro enzyme assay using para-nitrophenyl palmitate as substrate demonstrated that PaE was the most responsible for the degradation. These results suggest that PaE has a potential role in the extraction of fatty acids from plant surfaces, making them available for the growth of phylloplane yeasts.
Assuntos
Esterases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Ustilaginales/enzimologia , Arabidopsis , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Solanum lycopersicum , Folhas de Planta/química , Ustilaginales/crescimento & desenvolvimentoRESUMO
The biological function of mannosylerythritol lipids (MELs) towards their producer, Pseudozyma antarctica, on plant surfaces was investigated. MEL-producing wild-type strain and its MEL production-defective mutant strain (ΔPaEMT1) were compared in terms of their phenotypic traits on the surface of plastic plates, onion peels, and fresh leaves of rice and wheat. While wild-type cells adhering on plastic surfaces and onion peels changed morphologically from single cells to elongated ones for a short period of about 4 h and 1 day, respectively, ΔPaEMT1 cells did not. Microscopic observation of both strains grown on plant leaf surfaces verified that the wild type colonized a significantly bigger area than that of ΔPaEMT1. However, when MELs were exogenously added to the mutant cells on plant surfaces, their colonized area became enlarged. High-performance liquid chromatography analysis revealed a secretion of higher amount of MELs in the cell suspension incubated with wheat leaf cuttings compared to that in the suspension without cuttings. Transcriptional analysis by real-time reverse transcriptase PCR verified that the expression of erythritol/mannose transferase gene and MELs transporter gene of P. antarctica increased in the cells inoculated onto wheat leaves at 4, 6, and 8 days of incubation, indicating a potential of P. antarctica to produce MELs on the leaves. These findings demonstrate that MELs produced by P. antarctica on plant surfaces could be expected to play a significant role in fungal morphological development and propagation on plant surfaces.
Assuntos
Glicolipídeos/metabolismo , Folhas de Planta/microbiologia , Ustilaginales/crescimento & desenvolvimento , Ustilaginales/metabolismo , Adesão Celular , Perfilação da Expressão Gênica , Glucosiltransferases/análise , Proteínas de Membrana Transportadoras/metabolismo , Microscopia , Cebolas , Oryza , Plásticos , Fatores de Tempo , Triticum , Ustilaginales/citologia , Ustilaginales/fisiologiaRESUMO
Paraphoma-related fungal strain B47-9 secreted a biodegradable plastic (BP)-degrading enzyme which amounted to 68 % (w/w) of the total secreted proteins in a culture medium containing emulsified poly(butylene succinate-co-adipate) (PBSA) as sole carbon source. The gene for this enzyme was found to be composed of an open reading frame consisting of 681 nucleotides encoding 227 amino acids and two introns. Southern blot analysis showed that this gene exists as a single copy. The deduced amino acid sequence suggested that this enzyme belongs to the cutinase (E.C.3.1.1.74) family; thus, it was named P araphoma-related fungus cutinase-like enzyme (PCLE). It degraded various types of BP films, such as poly(butylene succinate), PBSA, poly(butylene adipate-co-terephthalate), poly(ε-caprolactone), and poly(DL-lactic acid). It has a molecular mass of 19.7 kDa, and an optimum pH and temperature for degradation of emulsified PBSA of 7.2 and 45 °C, respectively. Ca(2+) ion at a concentration of about 1.0 mM markedly enhanced the degradation of emulsified PBSA.
Assuntos
Adipatos/metabolismo , Ascomicetos/enzimologia , Plásticos Biodegradáveis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Succinatos/metabolismo , Ascomicetos/genética , Southern Blotting , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/isolamento & purificação , Cátions Bivalentes/metabolismo , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Ativadores de Enzimas/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Íntrons , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Especificidade por Substrato , TemperaturaRESUMO
KEY MESSAGE: Activation of SA-dependent signaling pathway and suppression of JA-dependent signaling pathway seem to play key roles inB. thuringiensis-induced resistance toR. solanacearumin tomato plants. Bacillus thuringiensis, a well-known and effective bio-insecticide, has attracted considerable attention as a potential biological control agent for the suppression of plant diseases. Treatment of tomato roots with a filter-sterilized cell-free filtrate (CF) of B. thuringiensis systemically suppresses bacterial wilt caused by Ralstonia solanacearum through systemic activation of the plant defense system. Comparative analysis of the expression of the Pathogenesis-Related 1(P6) gene, a marker for induced resistance to pathogens, in various tissues of tomato plants treated with CF on their roots suggested that the B. thuringiensis-induced defense system was activated in the leaf, stem, and main root tissues, but not in the lateral root tissue. At the same time, the growth of R. solanacearum was significantly suppressed in the CF-treated main roots but not in the CF-treated lateral roots. This distinct activation of the defense reaction and suppression of R. solanacearum were reflected by the differences in the transcriptional profiles of the main and lateral tissues in response to the CF. In CF-treated main roots, but not CF-treated lateral roots, the expression of several salicylic acid (SA)-responsive defense-related genes was specifically induced, whereas jasmonic acid (JA)-related gene expression was either down-regulated or not induced in response to the CF. On the other hand, genes encoding ethylene (ET)-related proteins were induced equally in both the main and lateral root tissues. Taken together, the co-activation of SA-dependent signaling pathway with ET-dependent signaling pathway and suppression of JA-dependent signaling pathway may play key roles in B. thuringiensis-induced resistance to R. solanacearum in tomato.
Assuntos
Bacillus thuringiensis/fisiologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Doenças das Plantas/imunologia , Raízes de Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Solanum lycopersicum/genética , Sistema Livre de Células , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ralstonia solanacearum/crescimento & desenvolvimento , Transdução de Sinais/genética , Fatores de Tempo , Regulação para Cima/genéticaRESUMO
Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural productivity and sustainability. A crucial step for exploring soil microbiomes with important ecosystem functions is to perform statistical analyses on the potential relationship between microbiome structure and functions based on comparisons of hundreds or thousands of environmental samples collected across broad geographic ranges. In this study, we integrated agricultural field metadata with microbial community analyses by targeting 2,903 bulk soil samples collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1-42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational taxonomic units detected across the fields of 19 crop plant species allowed us to conduct statistical analyses (permutational analyses of variance, generalized linear mixed models, randomization analyses, and network analyses) on the relationship among edaphic factors, microbiome compositions, and crop disease prevalence. We then examined whether the diverse microbes form species sets varying in potential ecological impacts on crop plants. A network analysis suggested that the observed prokaryotes and fungi were classified into several species sets (network modules), which differed substantially in association with crop disease prevalence. Within the network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an ammonium-oxidizing archaeon, an antibiotics-producing bacterium, and a potentially mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive and crop-disease-suppressive states of soil microbiomes. The bird's-eye view of soil microbiome structure will provide a basis for designing and managing agroecosystems with high disease-suppressive functions.IMPORTANCEUnderstanding how microbiome structure and functions are organized in soil ecosystems is one of the major challenges in both basic ecology and applied microbiology. Given the ongoing worldwide degradation of agroecosystems, building frameworks for exploring structural diversity and functional profiles of soil microbiomes is an essential task. Our study provides an overview of cropland microbiome states in light of potential crop-disease-suppressive functions. The large data set allowed us to explore highly functional species sets that may be stably managed in agroecosystems. Furthermore, an analysis of network architecture highlighted species that are potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-suppressive states. By extending the approach of comparative analyses toward broader geographic ranges and diverse agricultural practices, agroecosystem with maximized biological functions will be further explored.
Assuntos
Archaea , Bactérias , Produtos Agrícolas , Fungos , Microbiota , Doenças das Plantas , Microbiologia do Solo , Japão , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Produtos Agrícolas/microbiologia , Doenças das Plantas/microbiologia , Solo/química , AgriculturaRESUMO
Deoxynivalenol (DON) is a natural toxin of fungi that cause Fusarium head blight disease of wheat and other small-grain cereals. DON accumulates in infected grains and promotes the spread of the infection on wheat, posing serious problems to grain production. The elucidation of DON-catabolic genes and enzymes in DON-degrading microbes will provide new approaches to decrease DON contamination. Here, we report a cytochrome P450 system capable of catabolizing DON in Sphingomonas sp. strain KSM1, a DON-utilizing bacterium newly isolated from lake water. The P450 gene ddnA was cloned through an activity-based screening of a KSM1 genomic library. The genes of its redox partner candidates (flavin adenine dinucleotide [FAD]-dependent ferredoxin reductase and mitochondrial-type [2Fe-2S] ferredoxin) were not found adjacent to ddnA; the redox partner candidates were further cloned separately based on conserved motifs. The DON-catabolic activity was reconstituted in vitro in an electron transfer chain comprising the three enzymes and NADH, with a catalytic efficiency (k(cat)/K(m)) of 6.4 mM(-1) s(-1). The reaction product was identified as 16-hydroxy-deoxynivalenol. A bioassay using wheat seedlings revealed that the hydroxylation dramatically reduced the toxicity of DON to wheat. The enzyme system showed similar catalytic efficiencies toward nivalenol and 3-acetyl deoxynivalenol, toxins that frequently cooccur with DON. These findings identify an enzyme system that catabolizes DON, leading to reduced phytotoxicity to wheat.
Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sphingomonas/enzimologia , Tricotecenos/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Coenzimas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Cinética , Dados de Sequência Molecular , NAD/metabolismo , Oxirredução , Análise de Sequência de DNA , Sphingomonas/isolamento & purificação , Microbiologia da ÁguaRESUMO
Enzymatic degradation of polyester films by a cutinase-like enzyme from Pseudozyma antarctica JCM10317 (PaE) was analyzed by surface plasmon resonance (SPR). The adsorption of PaE and the degradation rate for polyester films were quantitatively monitored by a positive and negative SPR signal shifts, respectively. The decrease in SPR signal and the erosion depth of amorphous poly(L-lactide) (a-PLLA) film measured by atomic force microscopy (AFM) had a linear relationship, and the weight loss was estimated from the AFM data combined with a density of a-PLLA film. Furthermore, SPR sensorgrams for various polyester films showed that degradation rate of poly(ε-caprolactone) and poly(butylene succinate-co-adipate) which contain C6 units was higher than that of other polyesters such as poly(butylene succinate) and a-PLLA. These results suggest that C6 is the preferred chain length as substrates for PaE.
Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Poliésteres/metabolismo , Ustilaginales/enzimologia , Microscopia de Força Atômica , Especificidade por Substrato , Ressonância de Plasmônio de SuperfícieRESUMO
Pseudozyma antarctica JCM 10317 exhibits a strong degradation activity for biodegradable plastics (BPs) such as agricultural mulch films composed of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA). An enzyme named PaE was isolated and the gene encoding PaE was cloned from the strain by functional complementation in Saccharomyces cerevisiae. The deduced amino acid sequence of PaE contains 198 amino acids with a predicted molecular weight of 20,362.41. High identity was observed between this sequence and that of cutinase-like enzymes (CLEs) (61-68%); therefore, the gene encoding PaE was named PaCLE1. The specific activity of PaE against emulsified PBSA was 54.8±6.3 U/mg. In addition to emulsified BPs, PaE degraded solid films of PBS, PBSA, poly(ε-caprolactone), and poly(lactic acid).
Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Plásticos/metabolismo , Ustilaginales/enzimologia , Adipatos/metabolismo , Sequência de Aminoácidos , Biotransformação , Butileno Glicóis/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Dados de Sequência Molecular , Peso Molecular , Polímeros/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Succinatos/metabolismo , Ustilaginales/genéticaRESUMO
The specificity of culturable bacteria on healthy and Fusarium head blight (FHB)-infected spikelets of wheat heads was investigated to find a candidate of biocontrol agents against FHB. The bacterial genus Pseudomonas was commonly isolated from the tissues, and phylogenetic analysis using 16S ribosomal RNA gene sequences of isolates of the genera revealed that particular phylogenetic groups in the genus specifically inhabited either healthy or infected spikelet tissues. The specificity of each group was suggested to be due to differences in the ability to form biofilms and colonize spikelet tissues; isolates originated from healthy spikelets formed biofilms on polyvinyl chloride microplate wells and highly colonized the spikelet tissues. Other bacterial groups obtained from FHB-infected spikelets less formed biofilms and attached with low densities on the spikelet tissues. Their colonization on the tissues, however, was promoted when co-inoculated with the causal pathogenic fungus, Fusarium graminearum, and several isolates were observed to smash the mycelia in vivo. Moreover, based on results of in vitro mycelial growth inhibition activity, the diseased tissue-originated isolates were verified to have a negative effect on the fungal growth. These results suggest that Pseudomonas isolates obtained from infected spikelet tissues were highly associated with the FHB pathogen and have potential as candidates for biological control against FHB.
Assuntos
Fusarium/fisiologia , Doenças das Plantas/microbiologia , Pseudomonas/isolamento & purificação , Triticum/microbiologia , Antibiose , Biofilmes , Flores/crescimento & desenvolvimento , Flores/microbiologia , Dados de Sequência Molecular , Controle Biológico de Vetores , Filogenia , Doenças das Plantas/prevenção & controle , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/fisiologia , Especificidade da Espécie , Triticum/crescimento & desenvolvimentoRESUMO
Deoxynivalenol (DON) is a hazardous and globally prevalent mycotoxin in cereals. It commonly accumulates in the grain of wheat, barley and other small grain cereals affected by Fusarium head blight (caused by several Fusarium species). The concept of reducing DON in naturally contaminated grain of wheat or barley using a DON-degrading bacterium is promising but has not been accomplished. In this study, we isolated a novel DON-utilising actinomycete, Marmoricola sp. strain MIM116, from wheat heads through a novel isolation procedure including an in situ plant enrichment step. Strain MIM116 had background degradation activity, and the activity was enhanced twofold by the consumption of DON. Among Tween 20, Triton X-100 and Tween 80, we selected Tween 80 as a spreading agent of strain MIM116 because it promoted DON degradation and the growth of strain MIM116 in the presence of DON. The inoculation of MIM116 cell suspension plus 0.01% Tween 80 into 1,000 harvested kernels of wheat and barley resulted in a DON decrease from approximately 3 mg kg(-1) to less than 1 mg kg(-1) of dry kernels, even when cells had only basal levels of DON-degrading activity. To the best of our knowledge, this is the first report that describes (1) the isolation of a DON-degrading bacterium from wheat heads, (2) the effects of surfactants on the biodegradation of DON and (3) the decrease of DON levels in naturally contaminated wheat and barley grain using a DON-degrading bacterium.
Assuntos
Actinomycetales/metabolismo , Fusarium/fisiologia , Hordeum/microbiologia , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo , Triticum/microbiologia , Actinomycetales/classificação , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Sementes/microbiologiaRESUMO
The mycotoxin deoxynivalenol (DON) causes serious problems worldwide in the production of crops such as wheat and barley because of its toxicity toward humans and livestock. A bacterial culture capable of degrading DON was obtained from soil samples collected in wheat fields using an enrichment culture procedure. The isolated bacterium, designated strain WSN05-2, completely removed 1,000 µg/mL of DON from the culture medium after incubation for 10 days. On the basis of phylogenetic studies, WSN05-2 was classified as a bacterium belonging to the genus Nocardioides. WSN05-2 showed significant growth in culture medium with DON as the sole carbon source. High-performance liquid chromatography analysis indicated the presence of a major initial metabolite of DON in the culture supernatant. The metabolite was identified as 3-epi-deoxynivalenol (3-epi-DON) by mass spectrometry and (1)H and (13)C nuclear magnetic resonance analysis. The amount of DON on wheat grain was reduced by about 90% at 7 days after inoculation with WSN05-2. This is the first report of a Nocardioides sp. strain able to degrade DON and of the yet unknown 3-epi-DON as an intermediate in the degradation of DON by a microorganism.
Assuntos
Actinomycetales/isolamento & purificação , Actinomycetales/metabolismo , Micotoxinas/metabolismo , Microbiologia do Solo , Tricotecenos/metabolismo , Triticum/microbiologia , Actinomycetales/classificação , Actinomycetales/genética , Biodegradação Ambiental , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Espectrometria de Massas , Dados de Sequência Molecular , Micotoxinas/análogos & derivados , Filogenia , Tricotecenos/químicaRESUMO
The phyllosphere is one of the most common habitats for terrestrial bacteria. However, little is known about the populations of bacteria, including unculturable bacteria, that thrive on plant surfaces. Here, we developed a fluorescent nuclear staining technique to easily and rapidly observe and enumerate populations of total and living epiphytic bacteria, with particular emphasis on the concentration by centrifugation and fixation of the epiphytic bacteria. An investigation on the optimal conditions for centrifugation and fixation revealed that centrifugation at 20 400g for 2 min and fixation with 0.5% glutaraldehyde solution were the optimum conditions for observation of the bacteria. Using this technique, we assessed the populations of the total and living bacteria on the surface of rice plants. When epiphytic bacteria were recovered from rice seeds (Oryza sativa 'Koshihikari'), the number of total and living bacterial cells was 7.36 and 6.85 log10·g⻹ (fresh mass) in the seed washing, respectively. In contrast, the numbers of total and living bacterial cells in the leaf sheath washings were 5.5-5.8 and 5.3-5.7 log10·g⻹, respectively. Approximately 5%-30% of the total bacteria in the washing solution of rice plant were culturable. The usefulness of the enumeration method and the amount of bacteria on the plant surfaces are discussed.
Assuntos
Carga Bacteriana/métodos , Fenômenos Fisiológicos Bacterianos , Oryza/microbiologia , Folhas de Planta/microbiologia , Sementes/microbiologiaRESUMO
Fusarium head blight (FHB) of cereals is a severe disease caused by the Fusarium graminearum species complex. It leads to the accumulation of the mycotoxin deoxynivalenol (DON) in grains and other plant tissues and causes substantial economic losses throughout the world. DON is one of the most troublesome mycotoxins because it is a virulence factor to host plants, including wheat, and exhibits toxicity to plants and animals. To control both FHB and DON accumulation, a biological control approach using DON-degrading bacteria (DDBs) is promising. Here, we performed a disease control assay using an in vitro petri dish test composed of germinated wheat seeds inoculated with F. graminearum (Fg) and DDBs. Determination of both grown leaf lengths and hyphal lesion lengths as a measure of disease severity showed that the inoculation of seeds with the DDBs Devosia sp. strain NKJ1 and Nocardioides spp. strains SS3 or SS4 were protective against the leaf growth inhibition caused by Fg. Furthermore, it was as effective against DON accumulation. The inoculation with strains SS3 or SS4 also reduced the inhibitory effect on leaves treated with 10 µg mL-1 DON solution (without Fg). These results indicate that the DDBs partially suppress the disease by degrading DON.
Assuntos
Grão Comestível/microbiologia , Fusarium/metabolismo , Nocardioides/metabolismo , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Tricotecenos/metabolismo , Triticum/microbiologia , Germinação , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Sementes/microbiologiaRESUMO
Actinomycete Nocardioides sp. strain LS1, isolated from wheat leaf, is a bacterium that degrades and assimilates the mycotoxin deoxynivalenol (DON) as the carbon source. This is the first study of the genome sequence of the DON-degrading genus Nocardioides, and it facilitates the study of genes encoding the DON-degrading pathway.
RESUMO
Arbuscular mycorrhizal (AM) fungi are important members of the root microbiome and may be used as biofertilizers for sustainable agriculture. To elucidate the impact of AM fungal inoculation on indigenous root microbial communities, we used high-throughput sequencing and an analytical pipeline providing fixed operational taxonomic units (OTUs) as an output to investigate the bacterial and fungal communities of roots treated with a commercial AM fungal inoculum in six agricultural fields. AM fungal inoculation significantly influenced the root microbial community structure in all fields. Inoculation changed the abundance of indigenous AM fungi and other fungal members in a field-dependent manner. Inoculation consistently enriched several bacterial OTUs by changing the abundance of indigenous bacteria and introducing new bacteria. Some inoculum-associated bacteria closely interacted with the introduced AM fungi, some of which belonged to the genera Burkholderia, Cellulomonas, Microbacterium, Sphingomonas, and Streptomyces and may be candidate mycorrhizospheric bacteria that contribute to the establishment and/or function of the introduced AM fungi. Inoculated AM fungi also co-occurred with several indigenous bacteria with putative beneficial traits, suggesting that inoculated AM fungi may recruit specific taxa to confer better plant performance. The bacterial families Methylobacteriaceae, Acetobacteraceae, Armatimonadaceae, and Alicyclobacillaceae were consistently reduced by the inoculation, possibly due to changes in the host plant status caused by the inoculum. To the best of our knowledge, this is the first large-scale study to investigate interactions between AM fungal inoculation and indigenous root microbial communities in agricultural fields.
Assuntos
Agricultura , Microbiota , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Micorrizas/classificação , Cebolas/crescimento & desenvolvimento , Cebolas/microbiologia , Fósforo/química , RNA Ribossômico 16S/genética , Solo/química , SimbioseRESUMO
The phylloplane yeast Pseudozyma antarctica secretes an esterase, named PaE, and xylanase when cultivated with xylose. We previously observed that the lipophilic layer of Micro-Tom tomato leaves became thinner after the culture filtrate treatment. The leaves developed reduced water-holding ability and became wilted. In this study, the purified enzymes were spotted on Micro-Tom leaves. PaE, but not xylanase, thinned the lipophilic layer of leaves and decreased leaf resistance to the phytopathogenic fungus Botrytis cinerea. Disease severity increased significantly in detached leaves and potted plants treated with the culture filtrate and B. cinerea spores compared with those treated with inactivated enzyme and B. cinerea alone. Spore germination ratios, numbers of penetrating fungal hyphae in the leaves, and fungal DNA contents also increased significantly on the detached leaves. Japanese knotweed (Fallopia japonica), a serious invasive alien weed in Europe and North America, also became susceptible to infection by the rust pathogen Puccinia polygoni-amphibii var. tovariae following the culture filtrate treatment. The culture filtrate treatment increased disease development in plants induced by both phytopathogenic fungi. Our results suggest that P. antarctica culture filtrate could be used as an adjuvant for sustainable biological weed control using phytopathogenic fungi.
Assuntos
Agentes de Controle Biológico , Esterases/metabolismo , Proteínas Fúngicas/metabolismo , Doenças das Plantas/prevenção & controle , Ustilaginales/fisiologia , Agentes de Controle Biológico/administração & dosagem , Esterases/administração & dosagem , Esterases/isolamento & purificação , Proteínas Fúngicas/administração & dosagem , Proteínas Fúngicas/isolamento & purificação , Solanum lycopersicum , Fenótipo , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologiaRESUMO
Agricultural mulch films made from biodegradable polymers (BP) have been used to decrease the burden of plastic waste recovery and recycling. However, their degradations depend largely on environmental conditions and sometimes do not proceed as desired. Yeast strains of Pseudozyma antarctica often isolated from rice husks were found to secrete an esterase to degrade BP films. Poly-butylene succinate-co-adipate (PBSA) films buried in unsterilized rice husks with 60% (w/w) moisture degraded rapidly compared to that buried in field soil. The type strain of P. antarctica JCM 10317 added as cell suspension onto sterilized rice husks with PBSA film grew rapidly forming filamentous growth on the surface of rice husks and films. BP-degrading enzyme secreted by the growing cells was adsorbed on the surface of film and decomposed the film. Addition of rice husk-derived P. antarctica strains also showed BP film degradation activity in sterilized rice husks. In the light of these findings, we suggest that techniques for disposal of used BPs which combine plastics with unutilized residual plant materials piled at the side of agricultural fields be developed.
Assuntos
Adipatos/metabolismo , Meio Ambiente , Oryza/química , Oryza/microbiologia , Plásticos/metabolismo , Ustilaginales/enzimologia , Biodegradação Ambiental , Esterases/metabolismo , Ustilaginales/crescimento & desenvolvimentoRESUMO
Arbuscular mycorrhizal (AM) fungi associate with most land plants and deliver phosphorus to the host. Identification of biotic/abiotic factors that determine crop responses to AM fungal inoculation is an essential step for successful application of the fungi in sustainable agriculture. We conducted three field trials on soybean with a commercial inoculum and developed a new molecular tool to dissect interactions between the inoculum and indigenous fungi on the MiSeq sequencing platform. Regression analysis indicated that sequence read abundance of the inoculum fungus was the most significant factor that determined soybean yield responses to the inoculation, suggesting that dominance of the inoculum fungus is a necessary condition for positive yield responses. Agricultural practices (fallow/cropping in the previous year) greatly affected the colonization levels (i.e. read abundances) of the inoculum fungus via altering the propagule density of indigenous AM fungi. Analysis of niche competition revealed that the inoculum fungus competed mainly with the indigenous fungi that are commonly distributed in the trial sites, probably because their life-history strategy is the same as that of the inoculum fungus. In conclusion, we provide a new framework for evaluating the significance of environmental factors towards successful application of AM fungi in agriculture.
Assuntos
Glycine max/microbiologia , Espécies Introduzidas , Micorrizas/fisiologia , Bases de Dados Factuais , Micorrizas/classificaçãoRESUMO
Microbes inhabiting the phyllosphere encounter harmful ultraviolet rays, and must develop adaptive strategies against this irradiation. In this study, we screened bacterial isolates originating from the phyllosphere of various plants which harbored absorbers of ultraviolet A (UVA), a wavelength range which is recognized as harmful to human skin. Of the 200 phyllosphere bacterial isolates we screened, methanol extracts from bacterial cells of seventeen isolates absorbed wavelengths in the range of 315-400nm. All of the UVA-absorbing strains belonged to Methylobacterium species based on 16S ribosomal RNA gene sequences, suggesting that cells of this bacterial genus contain specific UVA-absorbing compounds. When cells of a representative Methylobacterium strain were extracted using various solvents, UVA absorption was observed in the extracts obtained using several aqueous solvents, indicating that the UVA-absorbing compounds were highly polar. A compound was purified using solid columns and HPLC separation, and comparative analysis revealed that the absorption strength and spectrum of the compound were similar to those of the known UVA filter, avobenzone. The compound was also verified to be stable under UVA exposure for at least 480min. Based on these results, the UVA-absorbing compound harbored by Methylobacterium has potential to be used as a novel sunscreen ingredient.