Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Biochem Biophys Res Commun ; 718: 149981, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735134

RESUMO

In animal cells, vacuoles are absent, but can be induced by diseases and drugs. While phosphoinositides are critical for membrane trafficking, their role in the formation of these vacuoles remains unclear. The immunosuppressive KRP203/Mocravimod, which antagonizes sphingosine-1-phosphate receptors, has been identified as having novel multimodal activity against phosphoinositide kinases. However, the impact of this novel KRP203 activity is unknown. Here, we show that KRP203 disrupts the spatial organization of phosphoinositides and induces extensive vacuolization in tumor cells and immortalized fibroblasts. The KRP203-induced vacuoles are primarily from endosomes, and augmented by inhibition of PIKFYVE and VPS34. Conversely, overexpression of PTEN decreased KRP203-induced vacuole formation. Furthermore, V-ATPase inhibition completely blunted KRP203-induced vacuolization, pointing to a critical requirement of the endosomal maturation process. Importantly, nearly a half of KRP203-induced vacuoles are significantly decorated with PI4P, a phosphoinositide typically enriched at the plasma membrane and Golgi. These results suggest a model that noncanonical spatial reorganization of phosphoinositides by KRP203 alters the endosomal maturation process, leading to vacuolization. Taken together, this study reveals a previously unrecognized bioactivity of KRP203 as a vacuole-inducing agent and its unique mechanism of phosphoinositide modulation, providing a new insight of phosphoinositide regulation into vacuolization-associated diseases and their molecular pathologies.


Assuntos
Endossomos , PTEN Fosfo-Hidrolase , Fosfatidilinositóis , Vacúolos , Vacúolos/metabolismo , Vacúolos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Humanos , Fosfatidilinositóis/metabolismo , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Camundongos , Morfolinas/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/genética , Citoplasma/metabolismo , Células HeLa , Aminopiridinas , Compostos Heterocíclicos com 3 Anéis
2.
Mol Cell ; 61(2): 187-98, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26774281

RESUMO

While cellular GTP concentration dramatically changes in response to an organism's cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kß, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kß preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation, and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kß is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kß is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kß. The critical role of the GTP-sensing activity of PI5P4Kß in cancer signifies this lipid kinase as a cancer therapeutic target.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Guanosina Trifosfato/metabolismo , Espaço Intracelular/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Proliferação de Células , Cristalografia por Raios X , Células HEK293 , Humanos , Hidrólise , Cinética , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Proteômica , Transdução de Sinais
3.
BMC Nephrol ; 25(1): 124, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589827

RESUMO

BACKGROUND: Kidney transplant recipients (KTRs) are at risk of severe coronavirus disease 2019 (COVID-19), and even now that Omicron subvariants have become dominant, cases of severe disease are certain to occur. The aims of this retrospective study were to evaluate the efficacy of antiviral treatment for COVID-19 and to identify risk factors for severe disease in KTRs during Omicron subvariant-dominant periods. METHODS: A total of 65 KTRs diagnosed with COVID-19 who received antiviral treatment between July 2022 and September 2023 were analyzed. Mild cases received oral molnupiravir (MP) as outpatient therapy, while moderate or worse cases received intravenous remdesivir (RDV) as inpatient therapy. In principle, mycophenolate mofetil was withdrawn and switched to everolimus. We investigated the efficacy of antiviral treatment and compared the clinical parameters of mild/moderate and severe/critical cases to identify risk factors for severe COVID-19. RESULTS: Among 65 cases, 49 were mild, 6 were moderate, 9 were severe, and 1 was of critical severity. MP was administered to 57 cases; 49 (86%) improved and 8 (14%) progressed. RDV was administered to 16 cases; 14 (87%) improved and 2 (13%) progressed. Seventeen (26%) cases required hospitalization, and none died. Comparisons of the severe/critical group (n = 10) with the mild/moderate group (n = 55) demonstrated that the severe/critical group had a significantly higher median age (64 vs. 53 years, respectively; p = 0.0252), prevalence of diabetes (70% vs. 22%, respectively; p = 0.0047) and overweight/obesity (40% vs. 11%, respectively; p = 0.0393), as well as a significantly longer median time from symptom onset to initial antiviral therapy (3 days vs. 1 day, respectively; p = 0.0026). Multivariate analysis showed that a longer time from symptom onset to initial antiviral treatment was an independent risk factor for severe COVID-19 (p = 0.0196, odds ratio 1.625, 95% confidence interval 1.081-2.441). CONCLUSION: These findings suggest that a longer time from symptom onset to initial antiviral treatment is associated with a higher risk of severe COVID-19 in KTRs. Initiating antiviral treatment as early as possible is crucial for preventing severe outcomes; this represents a valuable insight into COVID-19 management in KTRs.


Assuntos
COVID-19 , Citidina/análogos & derivados , Hidroxilaminas , Transplante de Rim , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Fatores de Risco , Antivirais/uso terapêutico , Transplantados
4.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892143

RESUMO

Bladder cancer (BC) is a common genitourinary malignancy that exhibits silent morbidity and high mortality rates because of a lack of diagnostic markers and limited effective treatments. Here, we evaluated the role of the lncRNA brain cytoplasmic RNA 1 (BCYRN1) in BC. We performed loss-of-function assays to examine the effects of BCYRN1 downregulation in T24 and BOY BC cells. We found that BCYRN1 downregulation significantly inhibited the proliferation, migration, invasion, and three-dimensional spheroid formation ability and induced apoptosis in BC cells. Additionally, gene set enrichment analysis (GSEA) using RNA sequences from tumor fractions showed that BCYRN1 downregulation decreased the expression of mRNAs associated with the cell cycle. These findings were supported by observations of G2/M arrest in flow cytometry assays. Finally, we examined the expression of serum exosomal BCYRN1 as a biomarker. Clinically, BCYRN1 expression in serum exosomes from patients with BC (n = 31) was significantly higher than that in healthy donors (n = 19; mean difference: 4.1-fold higher, p < 0.01). Moreover, in patients who had undergone complete resection of BC, serum exosomal BCYRN1 levels were significantly decreased (n = 8). Thus, serum exosomal BCYRN1 may be a promising diagnostic marker and therapeutic target in patients with BC.


Assuntos
Apoptose , Biomarcadores Tumorais , Proliferação de Células , Exossomos , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/sangue , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/sangue , Exossomos/genética , Exossomos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Masculino , Linhagem Celular Tumoral , Proliferação de Células/genética , Apoptose/genética , Movimento Celular/genética , Feminino , Pessoa de Meia-Idade , Idoso
5.
Cancer Sci ; 114(10): 3946-3956, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37545017

RESUMO

Multitargeted receptor tyrosine kinase inhibitors, including vascular endothelial growth factor (VEGF) inhibitors, such as sunitinib, have been used as the primary targeted agents for patients with recurrent or distant metastasis of advanced renal cell carcinoma (RCC). However, endogenous or acquired sunitinib resistance has become a significant therapeutic problem. Therefore, we focused on mechanisms of sunitinib resistance in RCC. First, we undertook RNA sequencing analysis using previously established sunitinib-resistant RCC (SUR-Caki1, SUR-ACHN, and SUR-A498) cells. The results showed increased expression of secretogranin II (SCG2, chromogranin C) in SUR-RCC cells compared to parental cells. The Cancer Genome Atlas database showed that SCG2 expression was increased in RCC compared to normal renal cells. In addition, the survival rate of the SCG2 high-expression group was significantly lower than that of the RCC low-expression group. Thus, we investigated the involvement of SCG2 in sunitinib-resistant RCC. In vitro analysis showed that migratory and invasive abilities were suppressed by SCG2 knockdown SUR cells. As SCG2 was previously reported to be associated with angiogenesis, we undertook a tube formation assay. The results showed that suppression of SCG2 inhibited angiogenesis. Furthermore, coimmunoprecipitation assays revealed a direct interaction between SCG2 and hypoxia-inducible factor 1α (HIF1α). Expression levels of VEGF-A and VEGF-C downstream of HIF1α were found to be decreased in SCG2 knockdown SUR cells. In conclusion, SCG2 could be associated with sunitinib resistance through VEGF regulation in RCC cells. These findings could lead to a better understanding of the VHL/HIF/VEGF pathway and the development of new therapeutic strategies for sunitinib-resistant RCC.

6.
Biochem Biophys Res Commun ; 611: 99-106, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35487063

RESUMO

In recent years, cancer metabolism has attracted attention as a therapeutic target, and glutamine metabolism is considered one of the most important metabolic processes in cancer. Solute carrier family 1 member 5 (SLC1A5) is a sodium channel that functions as a glutamine transporter. In various cancer types, SLC1A5 gene expression is enhanced, and cancer cell growth is suppressed by inhibition of SLC1A5. However, the involvement of SLC1A5 in clear cell renal cell carcinoma (ccRCC) is unclear. Therefore, in this study, we evaluated the clinical importance of SLC1A5 in ccRCC using The Cancer Genome Atlas database. Our findings confirmed that SLC1A5 was a prognosis factor for poor survival in ccRCC. Furthermore, loss-of-function assays using small interfering RNAs or an SLC1A5 inhibitor (V9302) in human ccRCC cell lines (A498 and Caki1) showed that inhibition of SLC1A5 significantly suppressed tumor growth, invasion, and migration. Additionally, inhibition of SLC1A5 by V9302 in vivo significantly suppressed tumor growth, and the antitumor effects of SLC1A5 inhibition were related to cellular senescence. Our findings may improve our understanding of ccRCC and the development of new treatment strategies for ccRCC.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Carcinoma de Células Renais , Senescência Celular , Neoplasias Renais , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Humanos , Neoplasias Renais/genética , Antígenos de Histocompatibilidade Menor/genética , RNA Interferente Pequeno/genética
7.
Biochem Biophys Res Commun ; 630: 71-76, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36150242

RESUMO

Exosomes are 40-100 nm nano-sized extracellular vesicles and are receiving increasing attention as novel structures that participate in intracellular communication. We previously found that miRNA-1 (miR-1) functions as a tumor suppressor in renal cell carcinoma (RCC). In this study, we investigated the function of exosomal miR-1 and the possibility that the exosome constitutes a tumor maker in RCC. First, we established the method to collect exosomes from cell lysates and human serum by a spin column-based method. Next, we assessed exosomes using Nanosight nanoparticle tracking analysis and Western blot analysis with exosome marker CD63. We confirmed that exosomes labeled with PKH26 fused with recipient cells. Moreover, miR-1 expression was elevated in RCC cells treated with exosomes derived from miR-1-transfected cells. Functional analyses showed that exosomal miR-1 significantly inhibited cell proliferation, migration and invasion compared to control treatment. Our analyses with TCGA database of RCCs showed that miR-1 expression was significantly downregulated in clinical RCC samples compared to that in normal kidney samples, and patients with low miR-1 expression had poorer overall survival in comparison to patients with high expression. Furthermore, RNA sequence analyses showed that expression levels of several genes were altered by exposure to exosomal miR-1. The analyses with TCGA database indicated that high expression of MYO15A was associated with a poorer outcome in RCC. In addition, RT-qPCR analysis of exosomes from clinical patients' sera showed that MYO15A was significantly upregulated in RCC patients compared to that in healthy controls. This study showed that treatment with exosomal miR-1 might be an effective approach to treating RCCs. In addition, exosomal MYO15A could be a diagnostic tumor marker in RCCs.


Assuntos
Carcinoma de Células Renais , Exossomos , Neoplasias Renais , MicroRNAs , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Exossomos/metabolismo , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , MicroRNAs/metabolismo , Miosinas/metabolismo
8.
BMC Cancer ; 21(1): 48, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430801

RESUMO

BACKGROUND: Cisplatin-based chemotherapy is recommended as the primary treatment for advanced bladder cancer (BC) with unresectable or metastatic disease. However, the benefits are limited due to the acquisition of drug resistance. The mechanisms of resistance remain unclear. Although there are some reports that some molecules are associated with cisplatin resistance in advanced BC, those reports have not been fully investigated. Therefore, we undertook a new search for cisplatin resistance-related genes targeted by tumor suppressive microRNAs as well as genes that were downregulated in cisplatin-resistant BC cells and clinical BC tissues. METHODS: First, we established cisplatin-resistant BOY and T24 BC cell lines (CDDP-R-BOY, CDDP-R-T24). Then, Next Generation Sequence analysis was performed with parental and cisplatin-resistant cell lines to search for the microRNAs responsible for cisplatin resistance. We conducted gain-of-function analysis of microRNAs and their effects on cisplatin resistance, and we searched target genes comprehensively using Next Generation mRNA sequences. RESULTS: A total of 28 microRNAs were significantly downregulated in both CDDP-R-BOY and CDDP-R-T24. Among them, miR-486-5p, a tumor suppressor miRNA, was negatively correlated with the TNM classification of clinical BC samples in The Cancer Genome Atlas (TCGA) database. Transfection of miRNA-486-5p significantly inhibited cancer cell proliferation, migration, and invasion, and also improved the cells' resistance to cisplatin. Among the genes targeted by miRNA-486-5p, we focused on enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH), which is involved in the degradation of fatty acids. EHHADH was directly regulated by miRNA-486-5p as determined by a dual-luciferase reporter assay. Loss-of-function study using EHHADH si-RNA showed significant inhibitions of cell proliferation, migration, invasion and the recovery of cisplatin sensitivity. CONCLUSION: Identification of EHHADH as a target of miRNA-486-5p provides novel insights into the potential mechanisms of cisplatin resistance in BC.


Assuntos
Biomarcadores Tumorais/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Enzima Bifuncional do Peroxissomo/metabolismo , Neoplasias da Bexiga Urinária/patologia , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Enzima Bifuncional do Peroxissomo/genética , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Sci ; 111(5): 1607-1618, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32232883

RESUMO

Sunitinib, a multitargeted receptor tyrosine kinase inhibitor including vascular endothelial growth factor, has been widely used as a first-line treatment against metastatic renal cell carcinoma (mRCC). However, mRCC often acquires resistance to sunitinib, rendering it difficult to treat with this agent. Recently, Rapalink-1, a drug that links rapamycin and the mTOR kinase inhibitor MLN0128, has been developed with excellent therapeutic effects against breast cancer cells carrying mTOR resistance mutations. The aim of the present study was to evaluate the in vitro and in vivo therapeutic efficacy of Rapalink-1 against renal cell carcinoma (RCC) compared to temsirolimus, which is commonly used as a small molecule inhibitor of mTOR and is a derivative of rapamycin. In comparison with temsirolimus, Rapalink-1 showed significantly greater effects against proliferation, migration, invasion and cFolony formation in sunitinib-naïve RCC cells. Inhibition was achieved through suppression of the phosphorylation of substrates in the mTOR signal pathway, such as p70S6K, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and AKT. In addition, Rapalink-1 had greater tumor suppressive effects than temsirolimus against the sunitinib-resistant 786-o cell line (SU-R 786-o), which we had previously established, as well as 3 additional SU-R cell lines established here. RNA sequencing showed that Rapalink-1 suppressed not only the mTOR signaling pathway but also a part of the MAPK signaling pathway, the ErbB signaling pathway and ABC transporters that were associated with resistance to several drugs. Our study suggests the possibility of a new treatment option for patients with RCC that is either sunitinib-sensitive or sunitinib-resistant.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Renais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/análogos & derivados , Sunitinibe/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Sunitinibe/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
10.
Jpn J Clin Oncol ; 50(1): 66-72, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31665352

RESUMO

BACKGROUND: Patients with advanced high-risk prostate cancer (PCa) are prone to have worse pathological diagnoses of positive surgical margins and/or lymph node invasion, resulting in early biochemical recurrence (BCR) despite having undergone radical prostatectomy (RP). Therefore, it is controversial whether patients with high-risk PCa should undergo RP. The purpose of this study was to evaluate the efficacy of neoadjuvant chemohormonal therapy (NAC) followed by "extended" RP. METHODS: A total of 87 patients with high-risk PCa prospectively underwent extended RP after NAC; most of the patients underwent 6 months of estramustine phosphate (EMP) 140 mg twice daily, along with a luteinizing hormone-releasing hormone agonist/antagonist. We developed our surgical technique to reduce the rate of positive surgical margins. We aimed to approach the muscle layer of the rectum by dissecting the mesorectal fascia and continuing the dissection through the mesorectum until the muscle layer of the rectum was exposed. RESULTS: More than 1 year had elapsed after surgery in all 86 patients, with a median follow-up period of 37.7 months. The 3-year BCR-free survival was 74.9%. Multivariate Cox-regression analysis revealed that a positive core ratio of 50% or greater and pathological stage of pT3 or greater were independent predictors for BCR. About 17 of 23 cases received salvage androgen deprivation therapy and concurrent external beam radiotherapy, and showed no progression after the salvage therapies. CONCLUSIONS: NAC concordant with extended RP is feasible and might provide good cancer control for patients with high-risk PCa.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Estramustina/uso terapêutico , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Prostatectomia/métodos , Neoplasias da Próstata/terapia , Idoso , Antagonistas de Androgênios/uso terapêutico , Humanos , Japão , Linfonodos/patologia , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Estudos Prospectivos , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/patologia , Estudos Retrospectivos
11.
Biochem Biophys Res Commun ; 516(1): 50-56, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196624

RESUMO

Compartmentalization is vital for biological systems at multiple levels, including biochemical reactions in metabolism. Organelle-based compartments such as mitochondria and peroxisomes sequester the responsible enzymes and increase the efficiency of metabolism while simultaneously protecting the cell from dangerous intermediates, such as radical oxygen species. Recent studies show intracellular nucleotides, such as ATP and GTP, are heterogeneously distributed in cells with high concentrations at the lamellipodial and filopodial projections, or leading edge. However, the intracellular distribution of purine nucleotide enzymes remains unclear. Here, we report the enhanced localization of GTP-biosynthetic enzymes, including inosine monophosphate dehydrogenase (IMPDH isotype 1 and 2), GMP synthase (GMPS), guanylate kinase (GUK1) and nucleoside diphosphate kinase-A (NDPK-A) at the leading edge in renal cell carcinoma cells. They show significant co-localization at the membrane subdomain, and their co-localization pattern at the membrane is distinct from that of the cell body. While other purine nucleotide biosynthetic enzymes also show significant localization at the leading edge, their co-localization pattern with IMPDH is divergent. In contrast, a key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), predominantly localized in the cytoplasm. Mechanistically, we found that plasma membrane localization of IMPDH isozymes requires active actin polymerization. Our results demonstrate the formation of a discrete metabolic compartment for localized purine biosynthesis at the leading edge, which may promote localized nucleotide metabolism for cell migration and metastasis in cancers.


Assuntos
Carcinoma de Células Renais/enzimologia , Neoplasias Renais/enzimologia , Nucleotídeos de Purina/metabolismo , Carbono-Nitrogênio Ligases/análise , Carbono-Nitrogênio Ligases/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Guanilato Quinases/análise , Guanilato Quinases/metabolismo , Humanos , IMP Desidrogenase/análise , IMP Desidrogenase/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Nucleosídeo NM23 Difosfato Quinases/análise , Nucleosídeo NM23 Difosfato Quinases/metabolismo
13.
Br J Cancer ; 116(8): 1077-1087, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28324890

RESUMO

BACKGROUND: Based on the microRNA (miRNA) signature of bladder cancer (BC) by deep sequencing, we recently found that several double-stranded mature miRNAs derived from the same pre-miRNAs were sufficiently expressed and acted as tumour suppressors by regulating common target genes in BC. Our deep-sequencing signature of BC showed that all miR-199 family members (miR-199a-3p/-5p and miR-199b-3p/-5p) were also downregulated. We hypothesised that these miRNAs may function as tumour suppressors by regulating common target genes. METHODS: Functional assays of BC cells were performed using transfection of mature miRNA. In silico analyses and luciferase reporter analyses were applied to identify target genes of these miRNAs. The overall survival of patients with BC in The Cancer Genome Atlas (TCGA) database was evaluated by the Kaplan-Meier method. RESULTS: Restoration of these miRNAs significantly inhibited cell migration and invasion in BC cells. Integrin α3 (ITGA3) was directly regulated by these miRNAs. The Cancer Genome Atlas database showed that patients with low pre-miR-199 family (miR-199a-1/-2 and miR-199b) expression exhibited significantly poorer overall survival compared with patients with high pre-miR-199 family expression. CONCLUSIONS: miR-199 family miRNAs functioned as tumour suppressors in BC cells by targeting ITGA3 and might be good prognostic markers for predicting survival in patients with BC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Integrina alfa3/metabolismo , MicroRNAs/genética , Neoplasias da Bexiga Urinária/genética , Apoptose , Biomarcadores Tumorais , Western Blotting , Movimento Celular , Proliferação de Células , Humanos , Técnicas Imunoenzimáticas , Integrina alfa3/genética , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
14.
Cancer Sci ; 107(9): 1233-42, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27355528

RESUMO

Our recent study of the microRNA (miRNA) expression signature of bladder cancer (BC) by deep-sequencing revealed that two miRNA, microRNA-139-5p/microRNA-139-3p were significantly downregulated in BC tissues. The aim of this study was to investigate the functional roles of these miRNA and their modulation of cancer networks in BC cells. Functional assays of BC cells were performed using transfection of mature miRNA or small interfering RNA (siRNA). Genome-wide gene expression analysis, in silico analysis and dual-luciferase reporter assays were applied to identify miRNA targets. The associations between the expression of miRNA and its targets and overall survival were estimated by the Kaplan-Meier method. Gain-of-function studies showed that miR-139-5p and miR-139-3p significantly inhibited cell migration and invasion by BC cells. The matrix metalloprotease 11 gene (MMP11) was identified as a direct target of miR-139-5p and miR-139-3p. Kaplan-Meier survival curves showed that higher expression of MMP11 predicted shorter survival of BC patients (P = 0.029). Downregulated miR-139-5p or miR-139-3p enhanced BC cell migration and invasion in BC cells. MMP11 was directly regulated by these miRNA and might be a good prognostic marker for survival of BC patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Metaloproteinase 11 da Matriz/genética , MicroRNAs/genética , Interferência de RNA , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Imuno-Histoquímica , Masculino , Prognóstico , RNA Mensageiro/genética , Transfecção , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia
15.
J Biol Chem ; 289(7): 3950-9, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24338482

RESUMO

Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers.


Assuntos
Citocinese/fisiologia , Dictyostelium/enzimologia , Proteólise , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Protozoários/metabolismo , Ubiquitinação/fisiologia , Proteínas ras/metabolismo , Dictyostelium/genética , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Proteínas de Protozoários/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas ras/genética
17.
J Urol ; 192(6): 1822-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25014580

RESUMO

PURPOSE: We observed abnormal expression of the microRNA-23b/27b (miR-23b/27b) cluster in our previous study of miRNA expression signatures. However, the relationship between aberrant miRNA expression and clear cell renal cell carcinoma is not well established. We investigated the functional significance of the miR-23b/27b cluster in clear cell renal cell carcinoma cells and evaluated these miRNAs as biomarkers to predict the risk of clear cell renal cell carcinoma. MATERIALS AND METHODS: Expression levels of miR-23b and miR-27b were determined by quantitative real-time reverse transcriptase-polymerase chain reaction. The association between miRNA expression and overall survival was estimated by the Kaplan-Meier method. Gain of function assays were performed using mature miR-23b and miR-27b in the 786-O and A498 renal cell carcinoma cell lines. Targets regulated by these miRNAs were predicted by in silico analysis. RESULTS: Expression of the miR-23b/27b cluster was significantly decreased in clear cell renal cell carcinoma tissue specimens and associated with pathological grade and stage. Significantly shorter overall survival was observed in patients with lower expression of the miR-23b/27b cluster. Restoration of miR-23b and miR-27b significantly inhibited cancer cell proliferation, migration and invasion. CONCLUSIONS: Expression of the miR-23b/27b cluster was frequently decreased in clear cell renal cell carcinoma tissue. Reduced expression of these miRNAs increased the risk of disease progression and predicted poor survival. Thus, miR-23b and miR-27b function as tumor suppressors, targeting several oncogenic genes in clear cell renal cell carcinoma cells.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , MicroRNAs/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Tumorais Cultivadas
18.
J Hum Genet ; 59(2): 78-87, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24284362

RESUMO

Our recent study of microRNA (miRNA) expression signature of prostate cancer (PCa) has revealed that the microRNA-143/145 (miR-143/145) cluster is significantly downregulated in cancer tissues, suggesting that these cluster miRNAs are candidate tumor suppressors. The aim of this study was to investigate the functional significance of the miR-143/145 cluster in PCa cells and to identify novel targets regulated by these cluster miRNAs in PCa. Restoration of miR-143 or miR-145 in PCa cell lines (PC3 and DU145) revealed that these miRNAs significantly inhibited cancer cell migration and invasion. Gene expression data and in silico analysis demonstrated that Golgi membrane protein 1 (GOLM1) resembling a type II golgi transmembrane protein was a potential target of miR-143/145 cluster target gene. Gene expression studies and luciferase reporter assays showed that GOLM1 was directly regulated by the miR-143/145 cluster. Silencing of GOLM1 resulted in significant inhibition of cell migration and invasion in PCa cells. Furthermore, the expression of GOLM1 was upregulated in cancer tissues by immunohistochemistry. Loss of the tumor-suppressive miR-143/145 cluster enhanced cancer cell migration and invasion in PCa through directly regulating GOLM1. Our data on target genes regulated by the tumor-suppressive miR-143/145 cluster provide new insights into the potential mechanisms of PCa oncogenesis and metastasis.


Assuntos
Movimento Celular , Regulação da Expressão Gênica , Proteínas de Membrana/biossíntese , MicroRNAs/metabolismo , Família Multigênica , Proteínas de Neoplasias/biossíntese , Neoplasias da Próstata/metabolismo , RNA Neoplásico/metabolismo , Idoso , Linhagem Celular Tumoral , Humanos , Masculino , Proteínas de Membrana/genética , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Neoplásico/genética
19.
Mol Oncol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874588

RESUMO

Gemcitabine plus cisplatin (GC) combination chemotherapy is the primary treatment for advanced bladder cancer (BC) with unresectable or metastatic disease. However, most cases develop resistance to this therapy. We investigated whether drug resistance could be targeted through metabolic reprogramming therapies. Metabolomics analyses in our lab's gemcitabine- and cisplatin-resistant cell lines revealed increased phosphoglycerate dehydrogenase (PHGDH) expression in gemcitabine-resistant cells compared with parental cells. Isocitrate dehydrogenase 2 (IDH2) gain of function stabilized hypoxia-inducible factor1α (HIF1α) expression, stimulating aerobic glycolysis. In gemcitabine-resistant cells, elevated fumaric acid suppressed prolyl hydroxylase domain-containing protein 2/Egl nine homolog 1 (PHD2) and stabilized HIF1α expression. PHGDH downregulation or inhibition in gemcitabine-resistant BC cells inhibited their proliferation, migration, and invasion. Cisplatin-resistant cells showed elevated fatty acid metabolism, upregulating fatty acid synthase (FASN) downstream of tyrosine kinase. Using the fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor erdafitinib, we inhibited malonyl-CoA production, which is crucial for fatty acid synthesis, and thereby suppressed upregulated HIF1α expression. Combination treatment with NCT503 and erdafitinib synergistically suppressed tumor cell proliferation and induced apoptosis in vitro and in vivo. Understanding these mechanisms could enable innovative BC therapeutic strategies to be developed.

20.
Cancer Sci ; 104(3): 304-12, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23176581

RESUMO

Recently, many studies have suggested that microRNAs (miRNAs) are involved in cancer cell development, invasion, and metastasis of various types of human cancers. In a previous study, miRNA expression signatures from renal cell carcinoma (RCC) revealed that expression of microRNA-135a (miR-135a) was significantly reduced in cancerous tissues. The aim of this study was to investigate the functional significance of miR-135a and to identify miR-135a-mediated molecular pathways in RCC cells. Restoration of mature miR-135a significantly inhibited cancer cell proliferation and induced G0 /G1 arrest in the RCC cell lines caki2 and A498, suggesting that miR-135a functioned as a potential tumor suppressor. We then examined miR-135a-mediated molecular pathways using genome-wide gene expression analysis and in silico analysis. A total of 570 downregulated genes were identified in miR-135a transfected RCC cell lines. To investigate the biological significance of potential miR-135a-mediated pathways, we classified putative miR-135a-regulated genes according to the Kyoto Encyclopedia of Genes and Genomics pathway database. From our in silico analysis, 25 pathways, including the cell cycle, pathways in cancer, DNA replication, and focal adhesion, were significantly regulated by miR-135a in RCC cells. Moreover, based on the results of this analysis, we investigated whether miR-135a targeted the c-MYC gene in RCC. Gain-of-function and luciferase reporter assays showed that c-MYC was directly regulated by miR-135a in RCC cells. Furthermore, c-MYC expression was significantly upregulated in RCC clinical specimens. Our data suggest that elucidation of tumor-suppressive miR-135a-mediated molecular pathways could reveal potential therapeutic targets in RCC.


Assuntos
Carcinoma de Células Renais/genética , Regulação Neoplásica da Expressão Gênica , Genes myc , Neoplasias Renais/genética , MicroRNAs/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Genes Supressores de Tumor , Humanos , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa