Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 158(3): 620-32, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083872

RESUMO

Polarization of the plasma membrane (PM) into domains is an important mechanism to compartmentalize cellular activities and to establish cell polarity. Polarization requires formation of diffusion barriers that prevent mixing of proteins between domains. Recent studies have uncovered that the endoplasmic reticulum (ER) of budding yeast and neurons is polarized by diffusion barriers, which in neurons controls glutamate signaling in dendritic spines. The molecular identity of these barriers is currently unknown. Here, we show that a direct interaction between the ER protein Scs2 and the septin Shs1 creates the ER diffusion barrier in yeast. Barrier formation requires Epo1, a novel ER-associated subunit of the polarisome that interacts with Scs2 and Shs1. ER-septin tethering polarizes the ER into separate mother and bud domains, one function of which is to position the spindle in the mother until M phase by confining the spindle capture protein Num1 to the mother ER.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Polaridade Celular , Proteínas do Citoesqueleto/metabolismo , Difusão , Retículo Endoplasmático/química , Proteínas de Membrana/genética , Membrana Nuclear/metabolismo , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Microb Cell Fact ; 23(1): 36, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287338

RESUMO

The yeast Saccharomyces cerevisiae is widely used as a host cell for recombinant protein production due to its fast growth, cost-effective culturing, and ability to secrete large and complex proteins. However, one major drawback is the relatively low yield of produced proteins compared to other host systems. To address this issue, we developed an overlay assay to screen the yeast knockout collection and identify mutants that enhance recombinant protein production, specifically focusing on the secretion of the Trametes trogii fungal laccase enzyme. Gene ontology analysis of these mutants revealed an enrichment of processes including vacuolar targeting, vesicle trafficking, proteolysis, and glycolipid metabolism. We confirmed that a significant portion of these mutants also showed increased activity of the secreted laccase when grown in liquid culture. Notably, we found that the combination of deletions of OCA6, a tyrosine phosphatase gene, along with PMT1 or PMT2, two genes encoding ER membrane protein-O-mannosyltransferases involved in ER quality control, and SKI3, which encode for a component of the SKI complex responsible for mRNA degradation, further increased secreted laccase activity. Conversely, we also identified over 200 gene deletions that resulted in decreased secreted laccase activity, including many genes that encode for mitochondrial proteins and components of the ER-associated degradation pathway. Intriguingly, the deletion of the ER DNAJ co-chaperone gene SCJ1 led to almost no secreted laccase activity. When we expressed SCJ1 from a low-copy plasmid, laccase secretion was restored. However, overexpression of SCJ1 had a detrimental effect, indicating that precise dosing of key chaperone proteins is crucial for optimal recombinant protein expression. This study offers potential strategies for enhancing the overall yield of recombinant proteins and provides new avenues for further research in optimizing protein production systems.


Assuntos
Lacase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Lacase/genética , Lacase/metabolismo , Trametes/genética , Trametes/metabolismo , Proteínas Recombinantes , Processamento de Proteína Pós-Traducional
3.
PLoS Genet ; 12(7): e1006184, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27448207

RESUMO

Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations.


Assuntos
Guanilato Quinases/genética , Chaperonas Moleculares/genética , Agregados Proteicos/genética , Proteólise , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Mutação de Sentido Incorreto , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Solubilidade , Ubiquitinação
4.
PLoS Biol ; 12(10): e1001969, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25313861

RESUMO

Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER-mitochondria tethering complex called ERMES (the ER-mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER-mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Saccharomyces cerevisiae
5.
EMBO Rep ; 14(5): 434-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23519169

RESUMO

Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid-synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and in no instances have the contacts been demonstrated to be required for enzyme function. Here, we show that plasma membrane (PM)--ER contact sites in yeast are required for phosphatidylcholine synthesis and regulate the activity of the phosphatidylethanolamine N-methyltransferase enzyme, Opi3. Opi3 activity requires Osh3, which localizes to PM-ER contacts where it might facilitate in trans catalysis by Opi3. Thus, membrane contact sites provide a structural mechanism to regulate lipid synthesis.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatidilcolinas/biossíntese , Saccharomyces cerevisiae/metabolismo , Membrana Celular/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidato Fosfatase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Cell Sci ; 125(Pt 20): 4791-9, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22797914

RESUMO

The endoplasmic reticulum (ER) forms a network of sheets and tubules that extends throughout the cell. Proteins required to maintain this complex structure include the reticulons, reticulon-like proteins, and dynamin-like GTPases called atlastins in mammals and Sey1p in Saccharomyces cerevisiae. Yeast cells missing these proteins have abnormal ER structure, particularly defects in the formation of ER tubules, but grow about as well as wild-type cells. We screened for mutations that cause cells that have defects in maintaining ER tubules to grow poorly. Among the genes we found were members of the ER mitochondria encounter structure (ERMES) complex that tethers the ER and mitochondria. Close contacts between the ER and mitochondria are thought to be sites where lipids are moved from the ER to mitochondria, a process that is required for mitochondrial membrane biogenesis. We show that ER to mitochondria phospholipid transfer slows significantly in cells missing both ER-shaping proteins and the ERMES complex. These cells also have altered steady-state levels of phospholipids. We found that the defect in ER to mitochondria phospholipid transfer in a strain missing ER-shaping proteins and a component of the ERMES complex was corrected by expression of a protein that artificially tethers the ER and mitochondria. Our findings indicate that ER-shaping proteins play a role in maintaining functional contacts between the ER and mitochondria and suggest that the shape of the ER at ER-mitochondria contact sites affects lipid exchange between these organelles.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Dinaminas/genética , Dinaminas/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Mutação , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
BMC Bioinformatics ; 14: 354, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24305553

RESUMO

BACKGROUND: Synthetic Genetic Array (SGA) analysis is a procedure which has been developed to allow the systematic examination of large numbers of double mutants in the yeast Saccharomyces cerevisiae. The aim of these experiments is to identify genetic interactions between pairs of genes. These experiments generate a number of images of ordered arrays of yeast colonies which must be analyzed in order to quantify the extent of the genetic interactions. We have designed software that is able to analyze virtually any image of regularly arrayed colonies and allows the user significant flexibility over the analysis procedure. RESULTS: "Balony" is freely available software which enables the extraction of quantitative data from array-based genetic screens. The program follows a multi-step process, beginning with the optional preparation of plate images from single or composite images. Next, the colonies are identified on a plate and the pixel area of each is measured. This is followed by a scoring module which normalizes data and pairs control and experimental data files. The final step is analysis of the scored data, where the strength and reproducibility of genetic interactions can be visualized and cross-referenced with information on each gene to provide biological insights into the results of the screen. CONCLUSIONS: Analysis of SGA screens with Balony can be either automated or highly interactive, enabling the user to customize the process to their specific needs. Quantitative data can be extracted at each stage for external analysis if required. Beyond SGA, this software can be used for analyzing many types of plate-based high-throughput screens.


Assuntos
Genes Fúngicos , Estudo de Associação Genômica Ampla/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Contagem de Colônia Microbiana/instrumentação , Contagem de Colônia Microbiana/métodos , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Estudo de Associação Genômica Ampla/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Processamento de Imagem Assistida por Computador/instrumentação , Internet , Mutação/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Software/tendências , Interface Usuário-Computador
8.
J Cell Biol ; 179(3): 467-83, 2007 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-17984322

RESUMO

How cells monitor the distribution of organelles is largely unknown. In budding yeast, the largest subdomain of the endoplasmic reticulum (ER) is a network of cortical ER (cER) that adheres to the plasma membrane. Delivery of cER from mother cells to buds, which is termed cER inheritance, occurs as an orderly process early in budding. We find that cER inheritance is defective in cells lacking Scs2, a yeast homologue of the integral ER membrane protein VAP (vesicle-associated membrane protein-associated protein) conserved in all eukaryotes. Scs2 and human VAP both target yeast bud tips, suggesting a conserved action of VAP in attaching ER to sites of polarized growth. In addition, the loss of either Scs2 or Ice2 (another protein involved in cER inheritance) perturbs septin assembly at the bud neck. This perturbation leads to a delay in the transition through G2, activating the Saccharomyces wee1 kinase (Swe1) and the morphogenesis checkpoint. Thus, we identify a mechanism involved in sensing the distribution of ER.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fase G2 , Deleção de Genes , Marcação de Genes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Eletrônica , Modelos Biológicos , Modelos Genéticos , Mutação , Fatores de Tempo
9.
Dis Model Mech ; 13(7)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32471850

RESUMO

Advances in sequencing technology have led to an explosion in the number of known genetic variants of human genes. A major challenge is to now determine which of these variants contribute to diseases as a result of their effect on gene function. Here, we describe a generic approach using the yeast Saccharomyces cerevisiae to quickly develop gene-specific in vivo assays that can be used to quantify the level of function of a genetic variant. Using synthetic dosage lethality screening, 'sentinel' yeast strains are identified that are sensitive to overexpression of a human disease gene. Variants of the gene can then be functionalized in a high-throughput fashion through simple growth assays using solid or liquid media. Sentinel interaction mapping (SIM) has the potential to create functional assays for the large majority of human disease genes that do not have a yeast orthologue. Using the tumour suppressor gene PTEN as an example, we show that SIM assays can provide a fast and economical means to screen a large number of genetic variants.


Assuntos
Variação Genética , Genômica , PTEN Fosfo-Hidrolase/genética , Saccharomyces cerevisiae/genética , Biologia Computacional , Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Regulação para Cima
10.
Nat Commun ; 11(1): 2073, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350270

RESUMO

Functional variomics provides the foundation for personalized medicine by linking genetic variation to disease expression, outcome and treatment, yet its utility is dependent on appropriate assays to evaluate mutation impact on protein function. To fully assess the effects of 106 missense and nonsense variants of PTEN associated with autism spectrum disorder, somatic cancer and PTEN hamartoma syndrome (PHTS), we take a deep phenotypic profiling approach using 18 assays in 5 model systems spanning diverse cellular environments ranging from molecular function to neuronal morphogenesis and behavior. Variants inducing instability occur across the protein, resulting in partial-to-complete loss-of-function (LoF), which is well correlated across models. However, assays are selectively sensitive to variants located in substrate binding and catalytic domains, which exhibit complete LoF or dominant negativity independent of effects on stability. Our results indicate that full characterization of variant impact requires assays sensitive to instability and a range of protein functions.


Assuntos
Doença/genética , Modelos Genéticos , Mutação de Sentido Incorreto/genética , PTEN Fosfo-Hidrolase/genética , Animais , Comportamento Animal , Caenorhabditis elegans/fisiologia , Células Cultivadas , Dendritos/fisiologia , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Ensaios Enzimáticos , Células HEK293 , Humanos , Neoplasias/genética , Sistema Nervoso/crescimento & desenvolvimento , Fosforilação , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Piramidais/metabolismo , Ratos Sprague-Dawley , Saccharomyces cerevisiae/metabolismo
11.
Elife ; 82019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31453808

RESUMO

Dbp5 is an essential DEAD-box protein that mediates nuclear mRNP export. Dbp5 also shuttles between nuclear and cytoplasmic compartments with reported roles in transcription, ribosomal subunit export, and translation; however, the mechanism(s) by which nucleocytoplasmic transport occurs and how Dbp5 specifically contributes to each of these processes remains unclear. Towards understanding the functions and transport of Dbp5 in Saccharomyces cerevisiae, alanine scanning mutagenesis was used to generate point mutants at all possible residues within a GFP-Dbp5 reporter. Characterization of the 456 viable mutants led to the identification of an N-terminal Xpo1-dependent nuclear export signal in Dbp5, in addition to other separation-of-function alleles, which together provide evidence that Dbp5 nuclear shuttling is not essential for mRNP export. Rather, disruptions in Dbp5 nucleocytoplasmic transport result in tRNA export defects, including changes in tRNA shuttling dynamics during recovery from nutrient stress.


Assuntos
Transporte Biológico , RNA Helicases DEAD-box/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/genética , Análise Mutacional de DNA , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Mutação Puntual , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Nat Commun ; 9(1): 1535, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670105

RESUMO

Within canonical eukaryotic nuclei, DNA is packaged with highly conserved histone proteins into nucleosomes, which facilitate DNA condensation and contribute to genomic regulation. Yet the dinoflagellates, a group of unicellular algae, are a striking exception to this otherwise universal feature as they have largely abandoned histones and acquired apparently viral-derived substitutes termed DVNPs (dinoflagellate-viral-nucleoproteins). Despite the magnitude of this transition, its evolutionary drivers remain unknown. Here, using Saccharomyces cerevisiae as a model, we show that DVNP impairs growth and antagonizes chromatin by localizing to histone binding sites, displacing nucleosomes, and impairing transcription. Furthermore, DVNP toxicity can be relieved through histone depletion and cells diminish their histones in response to DVNP expression suggesting that histone reduction could have been an adaptive response to these viral proteins. These findings provide insights into eukaryotic chromatin evolution and highlight the potential for horizontal gene transfer to drive the divergence of cellular systems.


Assuntos
Dinoflagellida/metabolismo , Dinoflagellida/virologia , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas Virais/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Biologia Computacional , DNA/química , Genoma , Microscopia de Fluorescência , Fenótipo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Proteínas Virais/genética
13.
Dis Model Mech ; 9(9): 1039-49, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27519690

RESUMO

A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C-COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial respiratory chain complexes required for their proliferation.


Assuntos
Genes Fúngicos , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/terapia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Inativação de Genes , Testes Genéticos , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Subunidades Proteicas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
15.
Curr Opin Cell Biol ; 24(4): 502-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22694927

RESUMO

Eukaryotic cells synthesize multiple classes of lipids by distinct metabolic pathways in order to generate membranes with optimal physical and chemical properties. As a result, complex regulatory networks are required in all organisms to maintain lipid and membrane homeostasis as well as to rapidly and efficiently respond to cellular stress. The unicellular nature of yeast makes it particularly vulnerable to environmental stress and yeast has evolved elaborate signaling pathways to maintain lipid homeostasis. In this article we highlight the recent advances that have been made using the budding and fission yeasts and we discuss potential roles for the unfolded protein response (UPR) and the SREBP-Scap pathways in coordinate regulation of multiple lipid classes.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Lipídeos , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Homeostase , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/fisiologia
16.
Metallomics ; 3(2): 195-205, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21212869

RESUMO

Biological systems have developed with a strong dependence on transition metals for accomplishing a number of biochemical reactions. Iron, copper, manganese and zinc are essential for virtually all forms of life with their unique chemistries contributing to a variety of physiological processes including oxygen transport, generation of cellular energy and protein structure and function. Properties of these metals (and to a lesser extent nickel and cobalt) that make them so essential to life also make them extremely cytotoxic in many cases through the formation of damaging oxygen radicals via Fenton chemistry. While life has evolved to exploit the chemistries of transition metals to drive physiological reactions, systems have concomitantly evolved to protect against the damaging effects of these same metals. Saccharomyces cerevisiae is a valuable tool for studying metal homeostasis with many of the genes identified thus far having homologs in higher eukaryotes including humans. Using high density arrays, we have screened a haploid S. cerevisiae deletion set containing 4786 non-essential gene deletions for strains sensitive to each of Fe, Cu, Mn, Ni, Zn and Co and then integrated the six screens using cluster analysis to identify pathways that are unique to individual metals and others with function shared between metals. Genes with no previous implication in metal homeostasis were found to contribute to sensitivity to each metal. Significant overlap was observed between the strains that were sensitive to Mn, Ni, Zn and Co with many of these strains lacking genes for the high affinity Fe transport pathway and genes involved in vacuolar transport and acidification. The results from six genome-wide metal tolerance screens show that there is some commonality between the cellular defenses against the toxicity of Mn, Ni, Zn and Co with Fe and Cu requiring different systems. Additionally, potential new factors been identified that function in tolerance to each of the six metals.


Assuntos
Metaloproteínas/metabolismo , Metais Pesados/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transporte Biológico , Análise por Conglomerados , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Genômica , Metaloproteínas/química , Metaloproteínas/genética , Metais Pesados/química , Análise em Microsséries , Modelos Biológicos , Chaperonas Moleculares , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
17.
Genetics ; 185(2): 469-77, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20351216

RESUMO

The temporal and spatial regulation of histone post-translational modifications is essential for proper chromatin structure and function. The Saccharomyces cerevisiae NuA3 histone acetyltransferase complex modifies the amino-terminal tail of histone H3, but how NuA3 is targeted to specific regions of the genome is not fully understood. Yng1, a subunit of NuA3 and a member of the Inhibitor of Growth (ING) protein family, is required for the interaction of NuA3 with chromatin. This protein contains a C-terminal plant homeodomain (PHD) finger that specifically interacts with lysine 4-trimethylated histone H3 (H3K4me3) in vitro. This initially suggested that NuA3 is targeted to regions bearing the H3K4me3 mark; however, deletion of the Yng1 PHD finger does not disrupt the interaction of NuA3 with chromatin or result in a phenotype consistent with loss of NuA3 function in vivo. In this study, we uncovered the molecular basis for the discrepancies in these data. We present both genetic and biochemical evidence that full-length Yng1 has two independent histone-binding motifs: an amino-terminal motif that binds unmodified H3 tails and a carboxyl-terminal PHD finger that specifically recognizes H3K4me3. Although these motifs can bind histones independently, together they increase the apparent association of Yng1 for the H3 tail.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos/genética , Cromatina , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Histonas/genética , Lisina/química , Lisina/genética , Plantas/genética , Plantas/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Science ; 329(5995): 1085-8, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20798321

RESUMO

Recognition of lipids by proteins is important for their targeting and activation in many signaling pathways, but the mechanisms that regulate such interactions are largely unknown. Here, we found that binding of proteins to the ubiquitous signaling lipid phosphatidic acid (PA) depended on intracellular pH and the protonation state of its phosphate headgroup. In yeast, a rapid decrease in intracellular pH in response to glucose starvation regulated binding of PA to a transcription factor, Opi1, that coordinately repressed phospholipid metabolic genes. This enabled coupling of membrane biogenesis to nutrient availability.


Assuntos
Membrana Celular/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Inositol/genética , Inositol/metabolismo , Lipossomos/metabolismo , Mutação , Ligação Proteica , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Transcrição Gênica , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
19.
Yeast ; 20(2): 133-48, 2003 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-12518317

RESUMO

Precursors of secretory proteins are targeted to the membrane of the endoplasmic reticulum by specific protein complexes that recognize their signal sequence. All eukaryotic cells investigated so far have been found to possess the signal recognition particle (SRP) that targets the majority of precursors to the translocation machinery. In Saccharomyces cerevisiae a number of proteins are translocated independently of SRP. These precursors rely on a different signal sequence-binding complex, which includes Sec62p, Sec63p, Sec71p and Sec72p. Identifying interactions between individual components of this tetrameric protein complex is important in the understanding of its function. We demonstrate a specific interaction between the only two essential proteins in this complex, Sec62p and Sec63p. Second, we show evidence of homodimerization of Sec72p molecules and further identify the YLR301w gene product as a novel in vivo interacting partner of Sec72p. Finally, we determine the authentic N-terminus of Sec62p and describe interacting subdomains of both Sec62p and Sec63p.


Assuntos
Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Transporte Proteico/fisiologia , Análise de Sequência de DNA , Partícula de Reconhecimento de Sinal/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa