Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO Rep ; 23(12): e55481, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36268581

RESUMO

Most CRISPR-type V nucleases are stimulated to cleave double-stranded (ds) DNA targets by a T-rich PAM, which restricts their targeting range. Here, we identify and characterize a new family of type V RNA-guided nuclease, Cas12l, that exclusively recognizes a C-rich (5'-CCY-3') PAM. The organization of genes within its CRISPR locus is similar to type II-B CRISPR-Cas9 systems, but both sequence analysis and functional studies establish it as a new family of type V effector. Biochemical experiments show that Cas12l nucleases function optimally between 37 and 52°C, depending on the ortholog, and preferentially cut supercoiled DNA. Like other type V nucleases, it exhibits collateral nonspecific ssDNA and ssRNA cleavage activity that is triggered by ssDNA or dsDNA target recognition. Finally, we show that one family member, Asp2Cas12l, functions in a heterologous cellular environment, altogether, suggesting that this new group of CRISPR-associated nucleases may be harnessed as genome editing reagents.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
2.
Nucleic Acids Res ; 48(9): 5016-5023, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32246713

RESUMO

In recent years, CRISPR-associated (Cas) nucleases have revolutionized the genome editing field. Being guided by an RNA to cleave double-stranded (ds) DNA targets near a short sequence termed a protospacer adjacent motif (PAM), Cas9 and Cas12 offer unprecedented flexibility, however, more compact versions would simplify delivery and extend application. Here, we present a collection of 10 exceptionally compact (422-603 amino acids) CRISPR-Cas12f nucleases that recognize and cleave dsDNA in a PAM dependent manner. Categorized as class 2 type V-F, they originate from the previously identified Cas14 family and distantly related type V-U3 Cas proteins found in bacteria. Using biochemical methods, we demonstrate that a 5' T- or C-rich PAM sequence triggers dsDNA target cleavage. Based on this discovery, we evaluated whether they can protect against invading dsDNA in Escherichia coli and find that some but not all can. Altogether, our findings show that miniature Cas12f nucleases can protect against invading dsDNA like much larger class 2 CRISPR effectors and have the potential to be harnessed as programmable nucleases for genome editing.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/metabolismo , Clivagem do DNA , Escherichia coli/genética , Edição de Genes , Motivos de Nucleotídeos , Plasmídeos/genética
4.
Nat Methods ; 14(6): 600-606, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28459459

RESUMO

RNA-guided CRISPR-Cas9 endonucleases are widely used for genome engineering, but our understanding of Cas9 specificity remains incomplete. Here, we developed a biochemical method (SITE-Seq), using Cas9 programmed with single-guide RNAs (sgRNAs), to identify the sequence of cut sites within genomic DNA. Cells edited with the same Cas9-sgRNA complexes are then assayed for mutations at each cut site using amplicon sequencing. We used SITE-Seq to examine Cas9 specificity with sgRNAs targeting the human genome. The number of sites identified depended on sgRNA sequence and nuclease concentration. Sites identified at lower concentrations showed a higher propensity for off-target mutations in cells. The list of off-target sites showing activity in cells was influenced by sgRNP delivery, cell type and duration of exposure to the nuclease. Collectively, our results underscore the utility of combining comprehensive biochemical identification of off-target sites with independent cell-based measurements of activity at those sites when assessing nuclease activity and specificity.


Assuntos
Sistemas CRISPR-Cas/genética , Mapeamento Cromossômico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
5.
Plant Mol Biol ; 97(4-5): 371-383, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29959585

RESUMO

KEY MESSAGE: Hexaploid bread wheat is not readily amenable to traditional mutagenesis approaches. In this study, we show efficient utilization of CRISPR-Cas system and Next Generation Sequencing for mutant analysis in wheat. Identification and manipulation of male fertility genes in hexaploid bread wheat is important for understanding the molecular basis of pollen development and to obtain novel sources of nuclear genetic male sterility (NGMS). The maize Male sterile 45 (Ms45) gene encodes a strictosidine synthase-like enzyme and has been shown to be required for male fertility. To investigate the role of Ms45 gene in wheat, mutations in the A, B and D homeologs were produced using CRISPR-Cas9. A variety of mutations in the three homeologs were recovered, including a plant from two different genotypes each with mutations in all three homeologs. Genetic analysis of the mutations demonstrated that all three wheat Ms45 homeologs contribute to male fertility and that triple homozygous mutants are required to abort pollen development and achieve male sterility. Further, it was demonstrated that a wild-type copy of Ms45 gene from rice was able to restore fertility to these wheat mutant plants. Taken together, these observations provide insights into the conservation of MS45 function in a polyploid species. Ms45 based NGMS can be potentially utilized for a Seed Production Technology (SPT)-like hybrid seed production system in wheat.


Assuntos
Sistemas CRISPR-Cas , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Sequência de Aminoácidos , Flores/genética , Flores/crescimento & desenvolvimento , Mutação , Proteínas de Plantas/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Alinhamento de Sequência , Triticum/crescimento & desenvolvimento
6.
Plant Physiol ; 169(2): 931-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26269544

RESUMO

Targeted mutagenesis, editing of endogenous maize (Zea mays) genes, and site-specific insertion of a trait gene using clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)-guide RNA technology are reported in maize. DNA vectors expressing maize codon-optimized Streptococcus pyogenes Cas9 endonuclease and single guide RNAs were cointroduced with or without DNA repair templates into maize immature embryos by biolistic transformation targeting five different genomic regions: upstream of the liguleless1 (LIG1) gene, male fertility genes (Ms26 and Ms45), and acetolactate synthase (ALS) genes (ALS1 and ALS2). Mutations were subsequently identified at all sites targeted, and plants containing biallelic multiplex mutations at LIG1, Ms26, and Ms45 were recovered. Biolistic delivery of guide RNAs (as RNA molecules) directly into immature embryo cells containing preintegrated Cas9 also resulted in targeted mutations. Editing the ALS2 gene using either single-stranded oligonucleotides or double-stranded DNA vectors as repair templates yielded chlorsulfuron-resistant plants. Double-strand breaks generated by RNA-guided Cas9 endonuclease also stimulated insertion of a trait gene at a site near LIG1 by homology-directed repair. Progeny showed expected Mendelian segregation of mutations, edits, and targeted gene insertions. The examples reported in this study demonstrate the utility of Cas9-guide RNA technology as a plant genome editing tool to enhance plant breeding and crop research needed to meet growing agriculture demands of the future.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Engenharia Genética/métodos , RNA Guia de Cinetoplastídeos , Zea mays/genética , Acetolactato Sintase/genética , Agrobacterium/genética , Sequência de Aminoácidos , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Mutagênese Insercional/métodos , Mutação , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética
7.
CRISPR J ; 4(3): 438-447, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34152211

RESUMO

Clustered regularly interspaced palindromic repeats (CRISPR)-associated (Cas)9 transactivating CRISPR RNAs (tracrRNAs) form distinct structures essential for target recognition and cleavage and dictate exchangeability between orthologous proteins. As noncoding RNAs that are often apart from the CRISPR array, their identification can be arduous. In this article, a new bioinformatic method for the detection of Cas9 tracrRNAs is presented. The approach utilizes a covariance model based on both sequence homology and predicted secondary structure to locate tracrRNAs. This method predicts a tracrRNA for 98% of CRISPR-Cas9 systems identified by us. To ensure accuracy, we also benchmark our approach against biochemically vetted tracrRNAs finding false-positive and false-negative rates of 5.5% and 7.1%, respectively. Finally, the association between Cas9 amino acid sequence-based phylogeny and tracrRNA secondary structure is evaluated, revealing strong evidence that secondary structure is evolutionarily conserved among Cas9 lineages. Altogether, our findings provide insight into Cas9 tracrRNA evolution and efforts to characterize the tracrRNA of Cas9 systems.


Assuntos
Sistemas CRISPR-Cas , Evolução Molecular , RNA/química , Archaea/genética , Bactérias/genética , Proteínas Associadas a CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Filogenia , RNA Guia de Cinetoplastídeos/genética , Homologia de Sequência
8.
Nat Commun ; 12(1): 6191, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702830

RESUMO

Class 2 CRISPR systems are exceptionally diverse, nevertheless, all share a single effector protein that contains a conserved RuvC-like nuclease domain. Interestingly, the size of these CRISPR-associated (Cas) nucleases ranges from >1000 amino acids (aa) for Cas9/Cas12a to as small as 400-600 aa for Cas12f. For in vivo genome editing applications, compact RNA-guided nucleases are desirable and would streamline cellular delivery approaches. Although miniature Cas12f effectors have been shown to cleave double-stranded DNA, targeted DNA modification in eukaryotic cells has yet to be demonstrated. Here, we biochemically characterize two miniature type V-F Cas nucleases, SpCas12f1 (497 aa) and AsCas12f1 (422 aa), and show that SpCas12f1 functions in both plant and human cells to produce targeted modifications with outcomes in plants being enhanced with short heat pulses. Our findings pave the way for the development of miniature Cas12f1-based genome editing tools.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Edição de Genes , Bacillales/enzimologia , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Clostridiales/enzimologia , Endodesoxirribonucleases/química , Células HEK293 , Humanos , Células Vegetais , Multimerização Proteica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Zea mays
9.
Front Plant Sci ; 11: 535, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431725

RESUMO

Modern maize hybrids often contain biotech and native traits. To-date all biotech traits have been randomly inserted in the genome. Consequently, developing hybrids with multiple traits is expensive, time-consuming, and complex. Here we report using CRISPR-Cas9 to generate a complex trait locus (CTL) to facilitate trait stacking. A CTL consists of multiple preselected sites positioned within a small well-characterized chromosomal region where trait genes are inserted. We generated individual lines, each carrying a site-specific insertion landing pad (SSILP) that was targeted to a preselected site and capable of efficiently receiving a transgene via recombinase-mediated cassette exchange. The selected sites supported consistent transgene expression and the SSILP insertion had no effect on grain yield. We demonstrated that two traits residing at different sites within a CTL can be combined via genetic recombination. CTL technology is a major step forward in the development of multi-trait maize hybrids.

10.
Nat Biotechnol ; 38(5): 579-581, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32152597

RESUMO

We created waxy corn hybrids by CRISPR-Cas9 editing of a waxy allele in 12 elite inbred maize lines, a process that was more than a year faster than conventional trait introgression using backcrossing and marker-assisted selection. Field trials at 25 locations showed that CRISPR-waxy hybrids were agronomically superior to introgressed hybrids, producing on average 5.5 bushels per acre higher yield.


Assuntos
Proteínas de Plantas/genética , Locos de Características Quantitativas , Zea mays/crescimento & desenvolvimento , Sistemas CRISPR-Cas , Produção Agrícola , Edição de Genes/métodos , Introgressão Genética , Deleção de Sequência , Zea mays/genética
11.
Nat Commun ; 11(1): 5512, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139742

RESUMO

Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Biologia Computacional , Clivagem do DNA , RNA Guia de Cinetoplastídeos/metabolismo , Homologia de Sequência do Ácido Nucleico
12.
Methods Enzymol ; 616: 219-240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30691644

RESUMO

In recent years, Cas9 has revolutionized the genome-editing field and enabled a broad range of applications from basic biology to biotechnology and medicine. Cas9 specificity is dictated by base pairing of the guide RNA to the complementary DNA strand, however to initiate hybridization, a short protospacer adjacent motif (PAM) sequence is required in the vicinity of the target sequence. The PAM is recognized by the Cas9 protein and varies between Cas9s. There are thousands of type II CRISPR-Cas9 sequences available in sequence databases. To characterize the PAM recognition diversity provided by Cas9 orthologs, we developed a phylogeny-guided bioinformatics approach and streamlined our experimental procedures for Cas9 expression and RNP complex assembly using cell lysates and in vitro translation mixtures. This approach could be easily adapted for the characterization of other CRISPR-Cas nucleases that require PAM sequences and generate double-strand breaks following target recognition.


Assuntos
Bactérias/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Bactérias/genética , Pareamento de Bases , Proteína 9 Associada à CRISPR/genética , DNA/genética , DNA/metabolismo , Biblioteca Gênica , Filogenia , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
13.
Commun Biol ; 2: 383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646186

RESUMO

CRISPR-Cas systems are robust and facile tools for manipulating the genome, epigenome and transcriptome of eukaryotic organisms. Most groups use class 2 effectors, such as Cas9 and Cas12a, however, other CRISPR-Cas systems may provide unique opportunities for genome engineering. Indeed, the multi-subunit composition of class 1 systems offers to expand the number of domains and functionalities that may be recruited to a genomic target. Here we report DNA targeting in Zea mays using a class 1 type I-E CRISPR-Cas system from S. thermophilus. First, we engineer its Cascade complex to modulate gene expression by tethering a plant transcriptional activation domain to 3 different subunits. Next, using an immunofluorescent assay, we confirm Cascade cellular complex formation and observe enhanced gene activation when multiple subunits tagged with the transcriptional activator are combined. Finally, we examine Cascade mediated gene activation at chromosomal DNA targets by reprogramming Zea mays cells to change color.


Assuntos
Sistemas CRISPR-Cas , Engenharia Genética/métodos , Zea mays/genética , Biolística , Cromossomos de Plantas/genética , DNA de Plantas/genética , Genes de Plantas , Plasmídeos/genética , Streptococcus thermophilus/genética , Ativação Transcricional , Zea mays/embriologia
14.
Nat Commun ; 7: 13274, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27848933

RESUMO

Targeted DNA double-strand breaks have been shown to significantly increase the frequency and precision of genome editing. In the past two decades, several double-strand break technologies have been developed. CRISPR-Cas9 has quickly become the technology of choice for genome editing due to its simplicity, efficiency and versatility. Currently, genome editing in plants primarily relies on delivering double-strand break reagents in the form of DNA vectors. Here we report biolistic delivery of pre-assembled Cas9-gRNA ribonucleoproteins into maize embryo cells and regeneration of plants with both mutated and edited alleles. Using this method of delivery, we also demonstrate DNA- and selectable marker-free gene mutagenesis in maize and recovery of plants with mutated alleles at high frequencies. These results open new opportunities to accelerate breeding practices in a wide variety of crop species.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Complexos Multiproteicos/metabolismo , Ribonucleoproteínas/metabolismo , Zea mays/genética , Alelos , Sequência de Bases , Biolística , DNA de Plantas/metabolismo , Técnicas de Transferência de Genes , Genes de Plantas , Mutagênese/genética , Mutação/genética , Taxa de Mutação , RNA Guia de Cinetoplastídeos/metabolismo , Zea mays/citologia
15.
Mol Cell Endocrinol ; 208(1-2): 41-50, 2003 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-14580720

RESUMO

Peripheral distribution of the insect juvenile hormones (JHs) requires hemolymph transport proteins. A comparison of three strains of the tobacco hornworm Manduca sexta indicates that hemolymph JH binding protein (hJHBP) levels in the Madison wild-type (Mwt) strain are significantly higher than in the black larval mutant (bl) and Seattle wild-type (Swt) strains. To correlate differences in hJHBP levels between strain phenotypes with the hJHBP locus, we sequenced 8.4 kb of the hJHBP gene locus from each strain. Snb, an allele found in the Swt and bl strains, contains a 408 bp repetitive nuclear element flanked by 15 bp direct repeats. Mating studies coupled with molecular genotyping demonstrate that the presence of Snb correlates with a twofold lower hJHBP level relative to the allele found in the Mwt strain. Despite the lower hJHBP levels in individuals carrying the Snb gene, hemolymph levels of JH do not appear to be significantly affected.


Assuntos
Alelos , Proteínas de Transporte/genética , Hemolinfa/química , Proteínas de Insetos , Manduca/genética , Animais , Sequência de Bases , Southern Blotting , Proteínas de Transporte/sangue , Genótipo , Manduca/química , Dados de Sequência Molecular , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa