RESUMO
Rationale CC16 (club cell secretory protein) is a pneumoprotein produced predominantly by pulmonary club cells. Circulating CC16 is associated with protection from the inception and progression of the two most common obstructive lung diseases (asthma and chronic obstructive pulmonary disease). Objectives Although exact mechanisms remain elusive, studies consistently suggest a causal role of CC16 in mediating antiinflammatory and antioxidant functions in the lung. We sought to determine any novel receptor systems that could participate in CC16's role in obstructive lung diseases. Methods Protein alignment of CC16 across species led to the discovery of a highly conserved sequence of amino acids, leucine-valine-aspartic acid (LVD), a known integrin-binding motif. Recombinant CC16 was generated with and without the putative integrin-binding site. A Mycoplasma pneumoniae mouse model and a fluorescent cellular adhesion assay were used to determine the impact of the LVD site regarding CC16 function during live infection and on cellular adhesion during inflammatory conditions. Measurements and Main Results CC16 bound to integrin α4ß1), also known as the adhesion molecule VLA-4 (very late antigen 4), dependent on the presence of the LVD integrin-binding motif. During infection, recombinant CC16 rescued lung function parameters both when administered to the lung and intravenously but only when the LVD integrin-binding site was intact; likewise, neutrophil recruitment during infection and leukocyte adhesion were both impacted by the loss of the LVD site. Conclusions We discovered a novel receptor for CC16, VLA-4, which has important mechanistic implications for the role of CC16 in circulation as well as in the lung compartment.
Assuntos
Integrina alfa4beta1/metabolismo , Mycoplasma pneumoniae , Pneumonia por Mycoplasma/prevenção & controle , Uteroglobina/metabolismo , Animais , Adesão Celular , Modelos Animais de Doenças , Camundongos , Infiltração de Neutrófilos/fisiologia , Pneumonia por Mycoplasma/metabolismo , Ligação ProteicaRESUMO
Human surfactant protein-A2 (hSP-A2) is a component of pulmonary surfactant that plays an important role in the lung's immune system by interacting with viruses, bacteria, and fungi to facilitate pathogen clearance and by downregulating inflammatory responses after an allergic challenge. Genetic variation in SP-A2 at position Gln223Lys is present in up to â¼30% of the population and has been associated with several lung diseases, such as asthma, pulmonary fibrosis, and lung cancer (M. M. Pettigrew, J. F. Gent, Y. Zhu, E. W. Triche, et al., BMC Med Genet 8:15, 2007, https://bmcmedgenet.biomedcentral.com/articles/10.1186/1471-2350-8-15; Y. Wang, P. J. Kuan, C. Zing, J. T. Cronkhite, et al., Am J Hum Genet 84:52-59, 2009, https://www.cell.com/ajhg/fulltext/S0002-9297(08)00595-8). Previous work performed by our group showed differences in levels of SP-A binding to non-live mycoplasma membrane fractions that were dependent on the presence of a lysine (K) or a glutamine (Q) at amino acid position 223 in the carbohydrate region of SP-A2. On the basis of these differences, we have derived 20-amino-acid peptides flanking this region of interest in order to test the ability of each to regulate various immune responses to live Mycoplasma pneumoniae in SP-A knockout mice and RAW 264.7 cells. In both models, the 20-mer containing 223Q significantly decreased both tumor necrosis factor alpha (TNF-α) mRNA levels and protein levels in comparison to the 20-mer containing 223K during M. pneumoniae infection. While neither of the 20-mer peptides (223Q and 223K) had an effect on p38 phosphorylation during M. pneumoniae infection, the 223Q-20mer peptide significantly reduced NF-κB p65 phosphorylation in both models. Taken together, our data suggest that small peptides derived from the lectin domain of SP-A2 that contain the major allelic variant (223Q) maintain activity in reducing TNF-α induction during M. pneumoniae infection.
Assuntos
Anti-Inflamatórios/farmacologia , Interações entre Hospedeiro e Microrganismos/imunologia , Mycoplasma pneumoniae/imunologia , Peptídeos/farmacologia , Pneumonia por Mycoplasma/tratamento farmacológico , Proteína A Associada a Surfactante Pulmonar/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/imunologia , Animais , Anti-Inflamatórios/síntese química , Modelos Animais de Doenças , Regulação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycoplasma pneumoniae/efeitos dos fármacos , Mycoplasma pneumoniae/patogenicidade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Peptídeos/síntese química , Pneumonia por Mycoplasma/genética , Pneumonia por Mycoplasma/imunologia , Pneumonia por Mycoplasma/microbiologia , Domínios Proteicos , Proteína A Associada a Surfactante Pulmonar/química , Proteína A Associada a Surfactante Pulmonar/deficiência , Proteína A Associada a Surfactante Pulmonar/genética , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologiaRESUMO
Miracle mouthwash (MMW) is a commonly prescribed oral formulation compounded with varying active ingredients, depending on purpose of treatment. Due to patient-to-patient customization, the solubility, stability, and solid-state characteristics of the active ingredients may not be known after compounding. This study found that the common antibiotic, tetracycline hydrochloride (HCl), compounded in MMW formulations that contained dexamethasone elixir and diphenhydramine, underwent significant physical-chemical changes. Simulated patient conditions demonstrated appreciable fluctuations from the target content of 50 mg tetracycline HCl per teaspoon over 15 days. The lowest tetracycline content sampled was 32.5 mg, while the highest content sampled was 53.0 mg. Although tetracycline HCl went into solution after compounding, tetracycline did not remain in solution. In fact, the amount of tetracycline in solution declined exponentially, with over two-thirds of tetracycline precipitating out within the first day of compounding and 14% remaining in solution after 15 days. Crystals that formed within the MMW formulation were analyzed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD), which confirmed a solvent-mediated phase transformation of tetracycline HCl to tetracycline hexahydrate. For tetracycline in solution, pH had a significant effect on chemical degradation. Therefore, tetracycline HCl compounded in MMW formulations can have significant physical-chemical stability changes, possibly impacting patient dosing.
Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/química , Antissépticos Bucais/química , Tetraciclina/administração & dosagem , Tetraciclina/química , Composição de Medicamentos , Estabilidade de Medicamentos , Excipientes , HumanosRESUMO
Preformulation studies on tofacitinib citrate, a small molecule JAK3 specific inhibitor, have not been previously reported in literature. We therefore conducted several preformulation studies on tofacitinib citrate, and its free base, to better understand factors that affect its solubility, stability, and solid-state characteristics. Further, the results of the preformulation studies helped facilitate the development of a nebulized formulation of tofacitinib citrate for inhalational delivery to house dust mite allergen-challenged, BALB/c mice as a potential treatment for eosinophilic asthma. The preformulation results indicated tofacitinib having a basic pKa of 5.2, with its stability dependent on pH, ionic strength, and temperature. Degradation of tofacitinib follows apparent first-order kinetics. In order to maximize stability of the drug, ionic strength and temperature should be minimized, with an optimal range pH between 2.0 and 5.0. Additionally, our findings demonstrate that tofacitinib citrate can successfully be nebulized at a suitable droplet size for inhalation (1.2 ± 0.2 µm MMAD) through a nose-only chamber. Animals dosed with tofacitinib citrate demonstrated marked reductions in BAL eosinophils and total protein concentrations following HDM challenge. These data suggest that tofacitinib citrate represents the potential to be an effective therapy for eosinophilic asthma.
Assuntos
Antiasmáticos/administração & dosagem , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Piperidinas/administração & dosagem , Piperidinas/uso terapêutico , Pirimidinas/administração & dosagem , Pirimidinas/uso terapêutico , Pirróis/administração & dosagem , Pirróis/uso terapêutico , Administração por Inalação , Alérgenos , Animais , Composição de Medicamentos , Estabilidade de Medicamentos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , PyroglyphidaeRESUMO
A simulation model has been established to predict the residual aerodynamic particle size distribution (APSD) of dual-component pressurized metered dose inhalers (pMDIs). More specifically, this model estimates the APSD of pMDI formulations containing dissolved and suspended compounds for various formulations, and has been verified experimentally. Simulated and experimental data illustrate that APSDs of the dissolved and suspended components of the pMDI are influenced by concentrations of the dissolved and micronized suspended drugs, along with suspended drug size. Atomized droplets from such combination formulations may contain varying number of suspended drug particles and a representative concentration of dissolved drug. These sub-populations of atomized droplets may explain the residual APSDs. The suspended drug follows a monomodal, lognormal distribution and is more greatly impacted by the size and concentration of the suspended drug in comparison to the concentration of dissolved drug. On the other hand, dissolved drug illustrates a bimodal, lognormal residual particle size distribution both theoretically and experimentally. The smaller mode consists of residual particles made of dissolved drug only, while the larger mode consists of residual particles that contain both dissolved and suspended drugs. The model effectively predicted the size distributions of both the dissolved and suspended components of combination formulations (r(2) value of 0.914 for the comparison of simulated versus experimental MMAD values for the formulations examined). The results demonstrate that this model is a useful tool that may be able to expedite the development of combination pMDI formulation.
Assuntos
Broncodilatadores/química , Simulação por Computador , Inaladores Dosimetrados , Nebulizadores e Vaporizadores , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Administração por Inalação , Aerossóis , Desenho de Equipamento , Tamanho da Partícula , PressãoRESUMO
The peptide hormone, angiotensin (Ang-(1-7)), produces anti-inflammatory and protective effects by inhibiting production and expression of many cytokines and adhesion molecules that are associated with a cytokine storm. While Ang-(1-7) has been shown to reduce inflammation and airway hyperreactivity in models of asthma, little is known about the effects of Ang-(1-7) during live respiratory infections. Our studies were developed to test if Ang-(1-7) is protective in the lung against overzealous immune responses during an infection with Mycoplasma pneumonia (Mp), a common respiratory pathogen known to provoke exacerbations in asthma and COPD patients. Wild type mice were treated with infectious Mp and a subset of was given either Ang-(1-7) or peptide-free vehicle via oropharyngeal delivery within 2 h of infection. Markers of inflammation in the lung were assessed within 24 h for each set of animals. During Mycoplasma infection, one high dose of Ang-(1-7) delivered to the lungs reduced neutrophilia and Muc5ac, as well as Tnf-α and chemokines (Cxcl1) associated with acute respiratory distress syndrome (ARDS). Despite decreased inflammation, Ang-(1-7)-treated mice also had significantly lower Mp burden in their lung tissue, indicating decreased airway colonization. Ang-(1-7) also had an impact on RAW 264.7 cells, a commonly used macrophage cell line, by dose-dependently inhibiting TNF-α production while promoting Mp killing. These new findings provide additional support to the protective role(s) of Ang1-7 in controlling inflammation, which we found to be highly protective against live Mp-induced lung inflammation.
RESUMO
Estimation of crystalline solute solubility is well documented throughout the literature. However, the anhydrous crystal form is typically considered with these models, which is not always the most stable crystal form in water. In this study, an equation which predicts the aqueous solubility of a hydrate is presented. This research attempts to extend the utility of the ideal solubility equation by incorporating desolvation energetics of the hydrated crystal. Similar to the ideal solubility equation, which accounts for the energetics of melting, this model approximates the energy of dehydration to the entropy of vaporization for water. Aqueous solubilities, dehydration and melting temperatures, and log P values were collected experimentally and from the literature. The data set includes different hydrate types and a range of log P values. Three models are evaluated, the most accurate model approximates the entropy of dehydration (ΔSd) by the entropy of vaporization (ΔSvap) for water, and utilizes onset dehydration and melting temperatures in combination with log P. With this model, the average absolute error for the prediction of solubility of 14 compounds was 0.32 log units.