Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250505

RESUMO

BACKGROUND: Chlamydia trachomatis (CT) is a globally prevalent sexually transmitted infection (STI) that can result in pelvic inflammatory disease, ectopic pregnancy and infertility in women. Currently, there is no prophylactic vaccine. METHODS: This study examined T cell immunity in a cohort of women recently infected with CT. Participants were screened against peptides spanning 33 of 894 possible CT proteins, either ex vivo or using short-term cell lines (STCL). CT-specific T cells were characterized by IFN-γ ELISpot and flow cytometry. RESULTS: Ex vivo CT-specific T cells were rarely detected; however, following in vitro expanded CT-specific T cells were detected by IFN-γ ELISpot in 90% (27/30) of participants. Notably, over 50% of participants had T cell responses targeting chlamydial protease-like activity factor (CPAF). T cell epitopes were dispersed across the CPAF protein. Flow cytometry analysis of STCL found CT-specific cells, were mainly CD4+, produced IFN-γ and TNF-α and were sustained over 12 months. Ex vivo analysis suggested CT-specific T cells mostly exhibited a central memory phenotype. CONCLUSION: Our results indicate that CT infection elicits low-frequency, persistent CD4 T cell responses in most women and that the secreted protein, CPAF, is an immunoprevalent CT antigen. Altogether, these data support development and testing of CT vaccines that enhance CD4 T cells against CPAF.

2.
PLoS Pathog ; 18(8): e1010764, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35969621

RESUMO

Infections and disease caused by the obligate human pathogen Bordetella pertussis (Bp) are increasing, despite widespread vaccinations. The current acellular pertussis vaccines remain ineffective against nasopharyngeal colonization, carriage, and transmission. In this work, we tested the hypothesis that Bordetella polysaccharide (Bps), a member of the poly-ß-1,6-N-acetyl-D-glucosamine (PNAG/PGA) family of polysaccharides promotes respiratory tract colonization of Bp by resisting killing by antimicrobial peptides (AMPs). Genetic deletion of the bpsA-D locus, as well as treatment with the specific glycoside hydrolase Dispersin B, increased susceptibility to AMP-mediated killing. Bps was found to be both cell surface-associated and released during laboratory growth and mouse infections. Addition of bacterial supernatants containing Bps and purified Bps increased B. pertussis resistance to AMPs. By utilizing ELISA, immunoblot and flow cytometry assays, we show that Bps functions as a dual surface shield and decoy. Co-inoculation of C57BL/6J mice with a Bps-proficient strain enhanced respiratory tract survival of the Bps-deficient strain. In combination, the presented results highlight the critical role of Bps as a central driver of B. pertussis pathogenesis. Heterologous production of Bps in a non-pathogenic E. coli K12 strain increased AMP resistance in vitro, and augmented bacterial survival and pathology in the mouse respiratory tract. These studies can serve as a foundation for other PNAG/PGA polysaccharides and for the development of an effective Bp vaccine that includes Bps.


Assuntos
Infecções por Escherichia coli , Coqueluche , Animais , Humanos , Camundongos , Peptídeos Antimicrobianos , Biofilmes , Bordetella pertussis/genética , Escherichia coli , Camundongos Endogâmicos C57BL , Vacina contra Coqueluche , Polissacarídeos
3.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308083

RESUMO

Bordetella bronchiseptica is an etiologic agent of respiratory diseases in animals and humans. Despite the widespread use of veterinary B. bronchiseptica vaccines, there is limited information on their composition and relative efficacy and on the immune responses that they elicit. Furthermore, human B. bronchiseptica vaccines are not available. We leveraged the dual antigenic and adjuvant functions of Bordetella colonization factor A (BcfA) to develop acellular B. bronchiseptica vaccines in the absence of an additional adjuvant. BALB/c mice immunized with BcfA alone or a trivalent vaccine containing BcfA and the Bordetella antigens FHA and Prn were equally protected against challenge with a prototype B. bronchiseptica strain. The trivalent vaccine protected mice significantly better than the canine vaccine Bronchicine and provided protection against a B. bronchiseptica strain isolated from a dog with kennel cough. Th1/17-polarized immune responses correlate with long-lasting protection against bordetellae and other respiratory pathogens. Notably, BcfA strongly attenuated the Th2 responses elicited by FHA and Prn, resulting in Th1/17-skewed responses in inherently Th2-skewed BALB/c mice. Thus, BcfA functions as both an antigen and an adjuvant, providing protection as a single-component vaccine. BcfA-adjuvanted vaccines may improve the efficacy and durability of vaccines against bordetellae and other pathogens.


Assuntos
Adesinas Bacterianas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Antígenos de Bactérias/administração & dosagem , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Infecções por Bordetella/prevenção & controle , Bordetella bronchiseptica/efeitos dos fármacos , Fatores de Virulência de Bordetella/administração & dosagem , Animais , Infecções por Bordetella/imunologia , Infecções por Bordetella/microbiologia , Bordetella bronchiseptica/imunologia , Bordetella bronchiseptica/patogenicidade , Cães , Feminino , Humanos , Imunização , Imunogenicidade da Vacina , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/microbiologia , Equilíbrio Th1-Th2/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/microbiologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/microbiologia
5.
Vaccines (Basel) ; 12(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39203989

RESUMO

Sexually transmitted infections (STIs) caused by bacterial pathogens Chlamydia trachomatis, Neisseria gonorrhoeae, and Treponema pallidum present significant public health challenges. These infections profoundly impact reproductive health, leading to pelvic inflammatory disease, infertility, and increased susceptibility to other infections. Prevention measures, including antibiotic treatments, are limited by the often-asymptomatic nature of these infections, the need for repetitive and continual screening of sexually active persons, antibiotic resistance for gonorrhea, and shortages of penicillin for syphilis. While vaccines exist for viral STIs like human papillomavirus (HPV) and hepatitis B virus (HBV), there are no vaccines available for bacterial STIs. This review examines the immune responses in the female genital tract to these bacterial pathogens and the implications for developing effective vaccines against bacterial STIs.

6.
Mucosal Immunol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969067

RESUMO

A vaccine is needed to combat the Chlamydia epidemic. Replication-deficient viral vectors are safe and induce antigen-specific T-cell memory. We tested the ability of intramuscular immunization with modified vaccinia Ankara (MVA) virus or chimpanzee adenovirus (ChAd) expressing chlamydial outer membrane protein (OmcB) or the secreted protein, chlamydial protease-like activating factor (CPAF), to enhance T-cell immunity and protection in mice previously infected with plasmid-deficient Chlamydia muridarum CM972 and elicit protection in naïve mice. MVA.OmcB or MVA.CPAF increased antigen-specific T cells in CM972-immune mice ∼150 and 50-fold, respectively, but failed to improve bacterial clearance. ChAd.OmcB/MVA.OmcB prime-boost immunization of naïve mice elicited a cluster of differentiation (CD) 8-dominant T-cell response dominated by cluster of differentiation (CD)8 T cells that failed to protect. ChAd.CPAF/ChAd.CPAF prime-boost also induced a CD8-dominant response with a marginal reduction in burden. Challenge of ChAd.CPAF-immunized mice genetically deficient in CD4 or CD8 T cells showed that protection was entirely CD4-dependent. CD4-deficient mice had prolonged infection, whereas CD8-deficient mice had higher frequencies of CPAF-specific CD4 T cells, earlier clearance, and reduced burden than wild-type controls. These data reinforce the essential nature of the CD4 T-cell response in protection from chlamydial genital infection in mice and the need for vaccine platforms that drive CD4-dominant responses.

7.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577476

RESUMO

Chlamydia trachomatis (CT) is the most common bacterial sexually transmitted infection (STI) in the United States, despite effective antibiotics. Information regarding natural immunity to CT will inform vaccine design. The objectives of this study were to determine immune cell populations and functional features associated with reduced risk of CT reinfection or endometrial CT infection. PBMCs were collected from a cohort of CT-exposed women who were tested for CT and other STIs at the cervix and endometrium (to determine ascension) and were repeatedly tested over the course of a year (to determine reinfection). Mass cytometry identified major immune populations and T cell subsets. Women with CT had increased CD4+ effector memory T cells (TEM) compared to uninfected women. Specifically, Th2, Th17, and Th17 DN CD4+ TEM were increased. Th17 and Th17 DN CD4+ central memory T cells (TCM) were increased in women who did not experience follow-up CT infection, suggesting that these cells may be important for protection. These data indicate that peripheral T cells display distinct features that correlate with natural immunity to CT and suggest that the highly plastic Th17 lineage plays a role in protection against reinfection.

8.
Front Immunol ; 14: 1181876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275891

RESUMO

Introduction: Resurgence of pertussis, caused by Bordetella pertussis, necessitates novel vaccines and vaccination strategies to combat this disease. Alum-adjuvanted acellular pertussis vaccines (aPV) delivered intramuscularly reduce bacterial numbers in the lungs of immunized animals and humans, but do not reduce nasal colonization. Thus, aPV-immunized individuals are sources of community transmission. We showed previously that modification of a commercial aPV (Boostrix) by addition of the Th1/17 polarizing adjuvant Bordetella Colonization Factor A (BcfA) attenuated Th2 responses elicited by alum and accelerated clearance of B. pertussis from mouse lungs. Here we tested whether a heterologous immunization strategy with systemic priming and mucosal booster (prime-pull) would reduce nasal colonization. Methods: Adult male and female mice were immunized intramuscularly (i.m.) with aPV or aPV/BcfA and boosted either i.m. or intranasally (i.n.) with the same formulation. Tissue-resident memory (TRM) responses in the respiratory tract were quantified by flow cytometry, and mucosal and systemic antibodies were quantified by ELISA. Immunized and naïve mice were challenged i.n. with Bordetella pertussis and bacterial load in the nose and lungs enumerated at days 1-14 post-challenge. Results: We show that prime-pull immunization with Boostrix plus BcfA (aPV/BcfA) generated IFNγ+ and IL-17+ CD4+ lung resident memory T cells (TRM), and CD4+IL-17+ TRM in the nose. In contrast, aPV alone delivered by the same route generated IL-5+ CD4+ resident memory T cells in the lungs and nose. Importantly, nasal colonization was only reduced in mice immunized with aPV/BcfA by the prime-pull regimen. Conclusions: These results suggest that TH17 polarized TRM generated by aPV/BcfA may reduce nasal colonization thereby preventing pertussis transmission and subsequent resurgence.


Assuntos
Bordetella pertussis , Coqueluche , Animais , Feminino , Masculino , Camundongos , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Linfócitos T CD4-Positivos , Interleucina-17 , Vacina contra Coqueluche , Coqueluche/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa