Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 131(23): 2581-2593, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29666112

RESUMO

Macrophages play important roles in recycling iron derived from the clearance of red blood cells (RBCs). They are also a critically important component of host defense, protecting against invading pathogens. However, the effects on macrophage biology of acutely ingesting large numbers of RBCs are not completely understood. To investigate this issue, we used a mouse model of RBC transfusion and clearance, which mimics the clinical setting. In this model, transfusions of refrigerator storage-damaged (ie, "old") RBCs led to increased erythrophagocytosis by splenic red pulp macrophages (RPMs). This robust erythrophagocytosis induced ferroptosis, an iron-dependent form of cell death, in RPMs. This was accompanied by increases in reactive oxygen species and lipid peroxidation in vivo, which were reduced by treatment in vitro with ferrostatin-1, a ferroptosis inhibitor. Old RBC transfusions also induced RPM-dependent chemokine expression by splenic Ly6Chi monocytes, which signaled Ly6Chi monocyte migration from bone marrow to spleen, where these cells subsequently differentiated into RPMs. The combination of cell division among remaining splenic RPMs, along with the influx of bone marrow-derived Ly6Chi monocytes, suggests that, following RPM depletion induced by robust erythrophagocytosis, there is a coordinated effort to restore homeostasis of the RPM population by local self-maintenance and contributions from circulating monocytes. In conclusion, these findings may be clinically relevant to pathological conditions that can arise as a result of increased erythrophagocytosis, such as transfusion-related immunomodulation and impaired host immunity.


Assuntos
Transfusão de Eritrócitos , Eritrócitos/imunologia , Macrófagos/imunologia , Fagocitose , Animais , Morte Celular , Divisão Celular , Modelos Animais de Doenças , Transfusão de Eritrócitos/efeitos adversos , Eritrócitos/citologia , Peroxidação de Lipídeos , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/imunologia
2.
Curr Opin Hematol ; 24(6): 551-557, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28806274

RESUMO

PURPOSE OF REVIEW: This review summarizes current and prior observations regarding transfusion-related immunomodulation (TRIM) and puts these ideas into a modern immunological context, incorporating concepts from innate, adaptive, and nutritional immunity. We propose that TRIM research focus on determining whether there are specific, well-defined immunosuppressive effects from transfusing 'pure' red blood cells (RBCs) themselves, along with the by-products produced by the stored RBCs as a result of the 'storage lesion.' Macrophages are a key cell type involved in physiological and pathological RBC clearance and iron recycling. The plasticity and diversity of macrophages makes these cells potential mediators of immune suppression that could constitute TRIM. RECENT FINDINGS: Recent reports identified the capacity of macrophages and monocytes to exhibit 'memory.' Exposure to various stimuli, such as engulfment of apoptotic cells and interactions with ß-glucan and lipopolysaccharide, were found to induce epigenetic, metabolic, and functional changes in certain myeloid cells, particularly macrophages and monocytes. SUMMARY: Macrophages may mediate the immunosuppressive aspects of TRIM that arise as a result of transfused RBCs and their storage lesion induced by-products.


Assuntos
Preservação de Sangue , Transfusão de Eritrócitos , Eritrócitos/imunologia , Tolerância Imunológica , Terapia de Imunossupressão , Macrófagos/imunologia , Humanos
4.
Front Physiol ; 11: 396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425810

RESUMO

Reticuloendothelial macrophages engulf ∼0.2 trillion senescent erythrocytes daily in a process called erythrophagocytosis (EP). This critical mechanism preserves systemic heme-iron homeostasis by regulating red blood cell (RBC) catabolism and iron recycling. Although extensive work has demonstrated the various effects on macrophage metabolic reprogramming by stimulation with proinflammatory cytokines, little is known about the impact of EP on the macrophage metabolome and proteome. Thus, we performed mass spectrometry-based metabolomics and proteomics analyses of mouse bone marrow-derived macrophages (BMDMs) before and after EP of IgG-coated RBCs. Further, metabolomics was performed on BMDMs incubated with free IgG to ensure that changes to macrophage metabolism were due to opsonized RBCs and not to free IgG binding. Uniformly labeled tracing experiments were conducted on BMDMs in the presence and absence of IgG-coated RBCs to assess the flux of glucose through the pentose phosphate pathway (PPP). In this study, we demonstrate that EP significantly alters amino acid and fatty acid metabolism, the Krebs cycle, OXPHOS, and arachidonate-linoleate metabolism. Increases in levels of amino acids, lipids and oxylipins, heme products, and RBC-derived proteins are noted in BMDMs following EP. Tracing experiments with U-13C6 glucose indicated a slower flux through glycolysis and enhanced PPP activation. Notably, we show that it is fueled by glucose derived from the macrophages themselves or from the extracellular media prior to EP, but not from opsonized RBCs. The PPP-derived NADPH can then fuel the oxidative burst, leading to the generation of reactive oxygen species necessary to promote digestion of phagocytosed RBC proteins via radical attack. Results were confirmed by redox proteomics experiments, demonstrating the oxidation of Cys152 and Cys94 of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hemoglobin-ß, respectively. Significant increases in early Krebs cycle and C5-branched dibasic acid metabolites (α-ketoglutarate and 2-hydroxyglutarate, respectively) indicate that EP promotes the dysregulation of mitochondrial metabolism. Lastly, EP stimulated aminolevulinic acid (ALA) synthase and arginase activity as indicated by significant accumulations of ALA and ornithine after IgG-mediated RBC ingestion. Importantly, EP-mediated metabolic reprogramming of BMDMs does not occur following exposure to IgG alone. In conclusion, we show that EP reprograms macrophage metabolism and modifies macrophage polarization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa