RESUMO
The in vivo inhibition of monoamine oxidase (MAO) inside and outside noradrenergic and dopaminergic nerve terminals in the hypothalamus and striatum, respectively, was examined in the rat after oral administration of a series of substituted p-aminophenethylamines and some related compounds. This was achieved by measuring their ability to protect MAO from irreversible inhibition by phenelzine, determined by the deaminating activity of synaptosomal preparations in the absence and presence of maprotiline, a selective inhibitor of the uptake of noradrenaline, or of amfonelic acid, a potent inhibitor of the uptake of dopamine, with small (0.25 microM) concentrations of [14C]noradrenaline or [14C]dopamine as substrate. It was found that several of these compounds were much more potent in protecting MAO within the noradrenergic neurones than MAO in other cells. Since the inhibitors of the uptake of noradrenaline, desipramine and CPP 199 antagonized this preference for noradrenergic MAO it is concluded that these MAO inhibitors are accumulated in the noradrenergic neurones by the membranal uptake carrier. Hence the selectivity for MAO within noradrenergic neurones seems to reflect the ability of the compounds to be transported by this carrier. The structure-activity relationship obtained showed the greatest selectivity for the unsubstituted p-dimethylamino-(FLA 289), p-methylamino-(FLA 727) and p-amino-(FLA 334)-amphetamines, whereas the 2-fluoro compound (FLA 558) had the greatest potency. N,N-didesmethylamiflamine [FLA 668(+)] had an almost specific effect in the noradrenergic nerve terminals. The primary p-amino derivatives, FLA 334 and FLA 668, produced a marked selective protection of MAO in dopaminergic nerve terminals, whereas the tertiary and secondary derivatives had much less preference for dopaminergic MAO.(ABSTRACT TRUNCATED AT 250 WORDS)
Assuntos
Corpo Estriado/enzimologia , Hipotálamo/enzimologia , Inibidores da Monoaminoxidase , Fenetilaminas/farmacologia , Animais , Dopamina/fisiologia , Masculino , Maprotilina/farmacologia , Ácido Nalidíxico/análogos & derivados , Naftiridinas/farmacologia , Norepinefrina/fisiologia , Fenelzina/farmacologia , Ratos , Ratos Endogâmicos , Sinapses/enzimologia , Transmissão SinápticaRESUMO
A series of substituted p-aminophenethylamines and some related compounds were examined with regards to the inhibition of monoamine oxidase (MAO) in vivo inside and outside 5-hydroxytryptaminergic neurones in the rat hypothalamus. This was recorded as the protection against the irreversible inhibition of MAO produced by phenelzine by determining the remaining deaminating activity in the absence and presence of citalopram using a low (0.1 microM) concentration of [14C]-5-hydroxytryptamine (5-HT) as substrate. Some of the phenethylamines were much more potent inside than outside the 5-hydroxytryptaminergic neurones. This neuronal selectivity was antagonized by pretreatment of the rats with norzimeldine, a 5-HT uptake inhibitor, which indicates that these compounds are accumulated in the 5-HT nerve terminals by the 5-HT pump. Selectivity was obtained for compounds with dimethyl, monomethyl or unsubstituted p-amino groups. An isopropyl group appears to substitute for the dimethylamino group but with considerably lower potency. Compounds with 2-substitution showed selectivity for aminergic neurones and this effect decreased with increased size of the substituent. The 2,6-dichloro derivative FLA 365 had, however, no neuronal selective action but was a potent MAO inhibitor. Substitutions in the 3- and 5-positions decreased both potency and selectivity. Prolongation of the side chain with one methylene group abolished the preference for the MAO in 5-hydroxytryptaminergic neurones although the MAO inhibitory potency remained. The selectivity disappeared by increasing the alpha-substituent to an ethyl group but remained for the alpha,alpha-dimethyl substituted derivatives. It is concluded that compounds which are (1) transported by the 5-HT pump and (2) potent reversible MAO-A inhibitors produce pronounced inhibition of MAO in 5-hydroxytryptaminergic neurones.