RESUMO
Cell migration is a fundamental phenomenon that underlies tissue morphogenesis, wound healing, immune response, and cancer metastasis. Great progresses have been made in research methodologies, with cell migration identified as a highly orchestrated process. Brain is considered the most complex organ in the human body, containing many types of neural cells with astrocytes playing crucial roles in monitoring normal functions of the central nervous system. Astrocytes are mostly quiescent under normal physiological conditions in the adult brain but become migratory after injury. Under most known pathological conditions in the brain, spinal cord and retina, astrocytes are activated and become hypertrophic, hyperplastic, and up-regulating GFAP based on the grades of severity. These three observations are the hallmark in glia scar formation-astrogliosis. The reactivation process is initiated with structural changes involving cell process migration and ended with cell migration. Detailed mechanisms in astrocyte migration have not been studied extensively and remain largely unknown. Here, we therefore attempt to review the mechanisms in migration of astrocytes.
Assuntos
Astrócitos/metabolismo , Movimento Celular/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Adesão Celular/fisiologia , Células Cultivadas , Humanos , Medula Espinal/citologia , Medula Espinal/metabolismoRESUMO
Cell migration is identified as a highly orchestrated process. It is a fundamental and essential phenomenon underlying tissue morphogenesis, wound healing, and immune response. Under dysregulation, it contributes to cancer metastasis. Brain is considered to be the most complex organ in human body containing many types of neural cells with astrocytes playing crucial roles in monitoring both physiological and pathological functions. Astrocytoma originates from astrocytes and its most malignant type is glioblastoma multiforme (WHO Grade IV astrocytoma), which is capable to infiltrate widely into the neighboring brain tissues making a complete resection of tumors impossible. Very recently, we have reviewed the mechanisms for astrocytes in migration. Given the fact that astrocytoma shares many histological features with astrocytes, we therefore attempt to review the mechanisms for glioma cells in migration and compare them to normal astrocytes, hoping to obtain a better insight into the dysregulation of migratory mechanisms contributing to their metastasis in the brain.
Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Movimento Celular/fisiologia , Glioma/patologia , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/cirurgia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirurgia , Glioma/metabolismo , Glioma/cirurgia , HumanosRESUMO
DREAM (downstream regulatory element antagonist modulator), Calsenilin and KChIP3 (potassium channel interacting protein 3) belong to the neuronal calcium sensor (NCS) superfamily, which transduces the intracellular calcium signaling into a variety of activities. They are encoded by the same gene locus, but have distinct subcellular locations. DREAM was first found to interact with DRE (downstream regulatory element) site in the vicinity of the promoter of prodynorphin gene to suppress gene transcription. Calcium can disassemble this interaction by binding reversibly to DREAM protein on its four EF-hand motifs. Apart from having calcium dependent DRE site binding, DREAM can also interact with other transcription factors, such as cAMP responsive element binding protein (CREB), CREB-binding protein (CBP) and cAMP responsive element modulator (CREM), by this concerted actions, DREAM extends the gene pool under its control. DREAM is predominantly expressed in central nervous system with its highest level in cerebellum, and accumulating evidence demonstrated that DREAM might play important roles in pain sensitivity. Novel findings have shown that DREAM is also involved in learning and memory processes, Alzheimer's disease and stroke. This mini-review provides a brief introduction of its discovery history and protein structure properties, focusing on the mechanism of DREAM nuclear translocation and gene transcription regulation functions.
Assuntos
Regulação da Expressão Gênica , Proteínas Interatuantes com Canais de Kv/fisiologia , Proteínas Repressoras/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Limiar da Dor , Proteínas Repressoras/genéticaRESUMO
Phloretin, a flavonoid present in various plants, has been reported to exert anticarcinogenic effects. However, the mechanism of its chemo-preventive effect on human glioblastoma cells is not fully understood. This study aimed to investigate the molecular mechanism of phloretin and its associated chemo-preventive effect in human glioblastoma cells. The results indicate that phloretin inhibited cell proliferation by inducing cell cycle arrest at the G0-G1 phase and induced apoptosis of human glioblastoma cells. Phloretin-induced cell cycle arrest was associated with increased expression of p27 and decreased expression of cdk2, cdk4, cdk6, cyclinD and cyclinE. Moreover, the PI3K/AKT/mTOR signaling cascades were suppressed by phloretin in a dose-dependent manner. In addition, phloretin triggered the mitochondrial apoptosis pathway and generated reactive oxygen species (ROS). This was accompanied by the up-regulation of Bax, Bak and c-PARP and the down-regulation of Bcl-2. The antioxidant agents N-acetyl-L-cysteine and glutathione weakened the effect of phloretin on glioblastoma cells. In conclusion, these results demonstrate that phloretin exerts potent chemo-preventive activity in human glioblastoma cells through the generation of ROS.
Assuntos
Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Floretina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspase 9/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Glioblastoma/metabolismo , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
The superfamily of importin-ß-related proteins is the largest class of nuclear transport receptors and can be generally divided into importins and exportins according to their transport directions. Eleven importins and seven exportins have been identified, and the expression patterns of both classes are important for their functions in nucleocytoplasmic transport activities. This study demonstrates that all of the importins (importin-ß; transportin-1, -2, and -3; and importin-4, -5, -7, -8, -9, -11, and -13) and all the exportins (exportin-1, -2, -4, -5, -6, -7, and -t) are differentially expressed in the cerebral cortex, cerebellum, hippocampus, and brainstem and in primary cultures of cerebral cortical astrocytes and neurons. For astrocytes, we observed that different importins and exportins displayed different expression changes during 0-6 hr of ischemia treatment, especially an increase of both the mRNA and the protein of exportin-7. Immunostaining showed that exportin-7 accumulated inside the nucleus and around the nuclear envelope. In addition, we noticed an increased cytoplasmic distribution of one of the cargo proteins of exportin-7, LKB1, an important element in maintaining energy homeostasis. This increased cytoplasmic distribution was accompanied by an increased expression of exportin-7 under ischemia in astrocytes. We demonstrate that exportin-7 responds to ischemia in astrocytes and that this response involves translocation of LKB1, a protein that plays important roles during metabolic stress, from the nucleus to the cytoplasm.
Assuntos
Astrócitos/metabolismo , Astrócitos/ultraestrutura , Isquemia Encefálica/patologia , Regulação da Expressão Gênica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Hipóxia Celular/fisiologia , Núcleo Celular/metabolismo , Células Cultivadas , Embrião de Mamíferos , Regulação da Expressão Gênica/genética , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neurônios/citologia , Neurônios/metabolismo , Fotodegradação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/genéticaRESUMO
Stroke is a leading cause of death and disability, and new strategies are required to reduce neuronal injury and improve prognosis. Ischemia preconditioning (IPC) is an intrinsic phenomenon that protects cells from subsequent ischemic injury and might provide promising mechanisms for clinical treatment. In this study, primary astrocytes exhibited significantly less cell death than control when exposed to different durations of IPC (15, 30, 60, or 120 min). A 15-min duration was the most effective IPC to protect astrocytes from 8-hr-ischemia injury. The protective mechanisms of IPC involve the upregulation of protective proteins, including 14-3-3γ, and attenuation of malondialdehyde (MDA) content and ATP depletion. 14-3-3γ is an antiapoptotic intracellular protein that was significantly upregulated for up to 84 hr after IPC. In addition, IPC promoted activation of the c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK)-1/2, p38, and protein kinase B (Akt) signaling pathways. When JNK was specifically inhibited with SP600125, the upregulation of 14-3-3γ induced by IPC was almost completely abolished; however, there was no effect on ATP or MDA levels. This suggests that, even though both energy preservation and 14-3-3γ up-regulation were turned on by IPC, they were controlled by different pathways. The ERK1/2, p38, and Akt signaling pathways were not involved in the 14-3-3γ upregulation and energy preservation. These results indicate that IPC could protect astrocytes from ischemia injury by inducing 14-3-3γ and by alleviating energy depletion through different pathways, suggesting multiple protection of IPC and providing new insights into potential stroke therapies.
Assuntos
Proteínas 14-3-3/metabolismo , Astrócitos/metabolismo , Regulação da Expressão Gênica/fisiologia , Precondicionamento Isquêmico , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Contagem de Células , Morte Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Isquemia/prevenção & controle , L-Lactato Desidrogenase/metabolismo , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Transdução de Sinais/efeitos dos fármacos , Fatores de TempoRESUMO
Cadmium (Cd), a highly ubiquitous toxic heavy metal, can contaminate the environment, including agricultural soil, water and air, via industrial runoff and other sources of pollution. Cd accumulated in the body via direct exposure or through the food chain results in neurodegeneration and many other diseases. Previous studies on its toxicity in the central nervous system (CNS) focused mainly on neurons. To obtain a more comprehensive understanding of Cd toxicity for the CNS, we investigated how astrocytes respond to acute and chronic Cd exposure and its toxic molecular mechanisms. When primary cultures of cerebral cortical astrocytes incubated with 1-300 µM CdCl2, morphological changes, LDH release and cell death were observed in a time and dose-dependent manner. Further studies demonstrated that acute and chronic Cd treatment phosphorylated JNK, p38 and Akt to different degrees, while ERK1/2 was only phosphorylated under low doses of Cd (10 µM) exposure. Inhibition of JNK and PI3K/Akt, but not of p38, could partially protect astrocyte from cytotoxicity in chronic and acute Cd exposure. Moreover, Cd also induced a strong calcium signal, while BAPTA, a specific intracellular calcium (Ca(2+)) chelator, prevented Cd-induced intracellular increase of calcium levels in astrocytes; inhibited the Cd-induced activation of ERK1/2, JNK, p38 and Akt; and also significantly reduced astrocyte cell death. All of these results suggested that the Cd-Ca(2+)-MAPK and PI3K/Akt signaling pathways were involved in Cd-induced toxicity in astrocytes. This toxicity involvement indicates that these pathways may be exploited as a target for the prevention of Cd-induced neurodegenerative diseases.
Assuntos
Astrócitos/efeitos dos fármacos , Cádmio/toxicidade , Sinalização do Cálcio , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Astrócitos/enzimologia , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos ICRRESUMO
Stem cell transplantation therapy has provided promising hope for the treatment of a variety of neurodegenerative disorders. Among challenges in developing disease-specific stem cell therapies, identification of key regulatory signals for neuronal differentiation is an essential and critical issue that remains to be resolved. Several lines of evidence suggest that JNK, also known as SAPK, is involved in neuronal differentiation and neural plasticity. It may also play a role in neurite outgrowth during neuronal development. In cultured mouse embryonic stem (ES) cells, we test the hypothesis that the JNK pathway is required for neuronal differentiation. After neural induction, the cells were plated and underwent differentiation for up to 5 days. Western blot analysis showed a dramatic increase in phosphorylated JNKs at 1-5 days after plating. The phosphorylation of JNK subsequently induced activation of STAT1 and STAT3 that lead to expressions of GAP-43, neurofilament, ßIII-tubulin, and synaptophysin. NeuN-colabelled with DCX, a marker for neuroblast, was enhanced by JNK signaling. Neuronal differentiation of ES cells was attenuated by treatment with SP600125, which inhibited the JNK activation and decreased the activation of STAT1 and STAT3, and consequently suppressed the expressions of GAP-43, neurofilament, ßIII-tubulin, and the secretion of VEGF. Data from immunocytochemistry indicated that the nuclear translocation of STAT3 was reduced, and neurites of ES-derived neurons were shorter after treatment with SP600125 compared with control cells. These results suggest that the JNK-STAT3 pathway is a key regulator required for early neuronal differentiation of mouse ES cells. Further investigation on expression of JNK isoforms showed that JNK-3 was significantly upregulated during the differentiation stage, while JNK-1 and JNK-2 levels decreased. Our study provided interesting information on JNK functions during ES cell neuronal differentiation.
Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/citologia , Fator de Transcrição STAT3/metabolismo , Animais , Antracenos/farmacologia , Células Cultivadas , Proteína Duplacortina , Camundongos , FosforilaçãoRESUMO
Astrocyte activation is a hallmark of central nervous system injuries resulting in glial scar formation (astrogliosis). The activation of astrocytes involves metabolic and morphological changes with complex underlying mechanisms, which should be defined to provide targets for astrogliosis intervention. Astrogliosis is usually accompanied by an upregulation of glial fibrillary acidic protein (GFAP). Using an in vitro scratch injury model, we scratched primary cultures of cerebral cortical astrocytes and observed an influx of calcium in the form of waves spreading away from the wound through gap junctions. Using the calcium blocker BAPTA-AM and the JNK inhibitor SP600125, we demonstrated that the calcium wave triggered the activation of JNK, which then phosphorylated the transcription factor c-Jun to facilitate the binding of AP-1 to the GFAP gene promoter to switch on GFAP upregulation. Blocking calcium mobilization with BAPTA-AM in an in vivo stab wound model reduced GFAP expression and glial scar formation, showing that the calcium signal, and the subsequent regulation of downstream signaling molecules, plays an essential role in brain injury response. Our findings demonstrated that traumatic scratch injury to astrocytes triggered a calcium influx from the extracellular compartment and activated the JNK/c-Jun/AP-1 pathway to switch on GFAP expression, identifying a previously unreported signaling cascade that is important in astrogliosis and the physiological response following brain injury.
Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Genes jun/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fator de Transcrição AP-1/metabolismo , Animais , Astrócitos/citologia , Sinalização do Cálcio/genética , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Gliose/genética , Camundongos , Camundongos Endogâmicos ICR , Fator de Transcrição AP-1/genética , Ativação TranscricionalRESUMO
Piperlongumine (PL), a natural alkaloid isolated from the long pepper, may have anti-cancer properties. It selectively targets and kills cancer cells but leaves normal cells intact. Here, we reported that PL selectively killed glioblastoma multiforme (GBM) cells via accumulating reactive oxygen species (ROS) to activate JNK and p38. PL at 20µM could induce severe cell death in three GBM cell lines (LN229, U87 and 8MG) but not astrocytes in cultures. PL elevated ROS prominently and reduced glutathione levels in LN229 and U87 cells. Antioxidant N-acetyl-L-cysteine (NAC) completely reversed PL-induced ROS accumulation and prevented cell death in LN229 and U87 cells. In LN229 and U87 cells, PL-treatment activated JNK and p38 but not Erk and Akt, in a dosage-dependent manner. These activations could be blocked by NAC pre-treatment. JNK and p38 specific inhibitors, SB203580 and SP600125 respectively, significantly blocked the cytotoxic effects of PL in LN229 and U87 cells. Our data first suggests that PL may have therapeutic potential for one of the most malignant and refractory tumors GBM.
Assuntos
Dioxolanos/farmacologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dioxolanos/química , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , HumanosRESUMO
This study comprehensively addresses the involvement of the protein CKLF-like Marvel transmembrane domain-containing family member 5 (CMTM5) in the context of demyelination and cytodegenerative autoimmune diseases, particularly multiple Sclerosis (MS). An observed reduction in CMTM5 expression in post-mortem MS lesions prompted further investigations in both in vitro and in vivo animal models. In the cuprizone animal model, we detected a decrease in CMTM5 expression in oligodendrocytes that is absent in other members of the CMTM protein family. Our findings also confirm these results in the experimental autoimmune encephalomyelitis (EAE) model with decreased CMTM5 expression in both cerebellum and spinal cord white matter. We also examined the effects of a Cmtm5 knockdown in vitro in the oligodendroglial Oli-neu mouse cell line using the CRISPR interference technique. Interestingly, we found no effects on cell response to thapsigargin-induced endoplasmic reticulum (ER) stress as determined by Atf4 activity, an indicator of cellular stress responses. Overall, these results substantiate previous findings suggesting that CMTM5, rather than contributing to myelin biogenesis, is involved in maintaining axonal integrity. Our study further demonstrates that the knockdown of Cmtm5 in vitro does not modulate oligodendroglial responses to ER stress. These results warrant further investigation into the functional role of CMTM5 during axonal degeneration in the context of demyelinating conditions.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Esclerose Múltipla/genética , Proteínas da Mielina/genética , Encefalomielite Autoimune Experimental/genética , Autopsia , OligodendrogliaRESUMO
Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood-brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate "water distribution" system in cells, exemplified by astrocytes, under normal and pathological conditions.
Assuntos
Aquaporinas , Astrócitos , Aquaporinas/metabolismo , Astrócitos/metabolismo , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Água/metabolismoRESUMO
We observed nuclear swelling in glutamate (Glu)-treated astrocytes that was concomitant with but independent of astrocytic cell swelling. We confirmed Glu-induced nuclear swelling with nuclei isolated from astrocytes. Ammonia is metabolically related to Glu and could induce a nuclear swelling in intact astrocytes but shrinkage in isolated nuclei. Other compounds such as glutamine, aspartate, taurine, glycine, and ATP did not cause any nuclear swelling in isolated nuclei of astrocytes. Surprisingly, Glu and ammonia did not induce nuclear swelling in microglia, C6, HEK 293, or Hep G2 cell lines in cultures and their isolated nuclei. The Glu- and ammonia-induced nuclear size changes appear to be a specific response of astrocytes to these two closely related metabolic compounds.
Assuntos
Amônia/farmacologia , Astrócitos/ultraestrutura , Núcleo Celular/ultraestrutura , Ácido Glutâmico/farmacologia , Amônia/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Microscopia de Força AtômicaRESUMO
The expression of the N-methyl-D-aspartate receptor (NMDA-R) in astrocytes is controversial. The receptor is commonly considered neuron-specific. We showed that astrocytes in primary cultures differentially expressed mRNA of NMDA-R subunits, NR1, NR2A and NR2B, in development, ischemia and post-ischemia. One-week-old cultures expressed detectable NR1 mRNA, which fell significantly at 2 weeks and became barely detectable at 4 weeks. NR2A and NR2B mRNA were both significantly up-regulated from 1 to 2 weeks. In 4 weeks, 2 h of ischemia caused a significant up-regulation of NR1 and NR2B mRNA; while 6 h caused down-regulation of NR2A mRNA. Under 3 h of post-ischemia, only NR1 mRNA was increased. Ischemia induced the expression of major NMDA-R effecter, nitric oxide synthase 1, which was unaffected by AMPA-R antagonist CNQX, but dose-dependently inhibited by NMDA-R specific antagonist MK-801. These findings reflected that astrocyte could express inducible functional NMDA receptors without the presence of neurons.
Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Isquemia Encefálica/patologia , Regulação para Baixo , Imunofluorescência , Ácido Glutâmico/farmacologia , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico Sintase Tipo I/metabolismo , RNA Mensageiro/genética , Receptores de N-Metil-D-Aspartato/genética , Regulação para CimaRESUMO
Ischemia occurs in the brain as the result of stroke and other related injuries and few therapies are effective. If more is understood then potential treatments could be investigated. It was previously reported that 14-3-3gamma could be up-regulated by ischemia in astrocyte to protect cells from ischemia-induced apoptosis. In this study, we attempted to uncover the mechanism responsible for this 14-3-3gamma up-regulation in primary culture of astrocytes under ischemic-like conditions. It was found that in vitro ischemia may activate PI3K/Akt and MAPK signaling pathways. Astrocyte cultures were treated with LY294002 (PI3K inhibitor), U0126 (ERK inhibitor), SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor). Only SP600125 could inhibit the ischemia-induced 14-3-3gamma up-regulation in astrocytes. At the same time, we observed an ischemia-induced nuclear translocation of p-c-Jun, a major downstream component of JNK. Inhibition of AP-1 with curcumin also inhibited 14-3-3gamma up-regulation indicating that ischemia-induced up-regulation of 14-3-3gamma in astrocyte involves activation of the JNK/p-c-Jun/AP-1 pathway.
Assuntos
Proteínas 14-3-3/biossíntese , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição AP-1/metabolismo , Astrócitos/enzimologia , Câmaras de Exposição Atmosférica , Isquemia Encefálica/enzimologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas c-jun/antagonistas & inibidores , RNA/biossíntese , RNA/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/antagonistas & inibidores , Regulação para CimaRESUMO
Polyphosphate (poly P) has been widely identified in both inorganic environment and living organisms. Research shows that poly P in bacteria enhances their resistance to severe environment, triggers their protective responses, increases biofilm formation and involves in predation and bacterial virulence. In eukaryotes, poly P has been found to enhance the proliferation of fibroblast and many tumor cell lines, induce the calcification of osteoblast and be involved in calcium ion release. Based on the existing information, we attempt to discuss the possible functions of poly P in the nervous system.
Assuntos
Polifosfatos/metabolismo , Bactérias/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Fibroblastos/citologia , Humanos , Sistema Nervoso/metabolismo , Osteoblastos/citologiaRESUMO
The mechanism of systemic spread of H5N1 virus in patients with avian influenza is unknown. Here, H5N1 nucleoprotein and hemagglutinin were identified by immunohistochemistry in the nucleus and cytoplasm of neutrophils in the placental blood of a pregnant woman. Viral RNA was detected in neutrophils by in situ hybridization and enhanced real-time polymerase chain reaction. Therefore, neutrophils may serve as a vehicle for viral replication and transportation in avian influenza.
Assuntos
Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Influenza Humana/virologia , Neutrófilos/virologia , Adulto , Antígenos Virais/análise , Humanos , Imuno-Histoquímica , Hibridização In Situ , Neutrófilos/química , Gestantes , RNA Viral/análiseRESUMO
BACKGROUND: Human infection with avian influenza H5N1 is an emerging infectious disease characterised by respiratory symptoms and a high fatality rate. Previous studies have shown that the human infection with avian influenza H5N1 could also target organs apart from the lungs. METHODS: We studied post-mortem tissues of two adults (one man and one pregnant woman) infected with H5N1 influenza virus, and a fetus carried by the woman. In-situ hybridisation (with sense and antisense probes to haemagglutinin and nucleoprotein) and immunohistochemistry (with monoclonal antibodies to haemagglutinin and nucleoprotein) were done on selected tissues. Reverse-transcriptase (RT) PCR, real-time RT-PCR, strand-specific RT-PCR, and nucleic acid sequence-based amplification (NASBA) detection assays were also undertaken to detect viral RNA in organ tissue samples. FINDINGS: We detected viral genomic sequences and antigens in type II epithelial cells of the lungs, ciliated and non-ciliated epithelial cells of the trachea, T cells of the lymph node, neurons of the brain, and Hofbauer cells and cytotrophoblasts of the placenta. Viral genomic sequences (but no viral antigens) were detected in the intestinal mucosa. In the fetus, we found viral sequences and antigens in the lungs, circulating mononuclear cells, and macrophages of the liver. The presence of viral sequences in the organs and the fetus was also confirmed by RT-PCR, strand-specific RT-PCR, real-time RT-PCR, and NASBA. INTERPRETATION: In addition to the lungs, H5N1 influenza virus infects the trachea and disseminates to other organs including the brain. The virus could also be transmitted from mother to fetus across the placenta.
Assuntos
Feto/patologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Humana/patologia , Sistema Respiratório/patologia , Adulto , Feminino , Genoma Viral , Humanos , Imuno-Histoquímica , Hibridização In Situ/métodos , Transmissão Vertical de Doenças Infecciosas , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Humana/transmissão , Influenza Humana/virologia , Masculino , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Replicação de Sequência Autossustentável/métodosRESUMO
Focal adhesion associated protein (FAAP), encoded by murine D10Wsu52e gene, is highly homologous to human HSPC117, which interacts with vinculin and talin. HeLa cells transfected with FAAP exhibited normal adhesion incorporation but showed impaired cell spreading, and restrained focal adhesion translocation. Moreover, FAAP facilitated vinculin-paxillin association, decreased interaction of paxillin-focal adhesion kinase and inhibited the phosphorylation of extracellular signal-regulated kinase. Together, these results suggest that FAAP, by virtue of modulating interaction of adhesion molecules, regulates cell adhesion dynamics.
Assuntos
Adesão Celular/fisiologia , Quinase 1 de Adesão Focal/fisiologia , Paxilina/fisiologia , Vinculina/fisiologia , Animais , Adesão Celular/genética , Movimento Celular/fisiologia , Quinase 1 de Adesão Focal/genética , Marcadores Genéticos , Células HeLa/citologia , Células HeLa/fisiologia , Humanos , Camundongos , TransfecçãoRESUMO
The unexpected finding of astrocytes to release glutamate as gliotransmitter challenges the traditional concepts on astrocyte being "passive" in CNS communications. Glutamate is the major excitatory transmitter in transferring information between neurons, but is now also known to activate astrocyte through transporters and receptors. Together with the sensitive swelling response, astrocytes could respond directly to glutamate and neuronal activity. Other new functions of astrocytes include modulation of synaptic plasticity and cerebral blood flow (CBF). The classic glutamate deplenishment through glutamine synthesis and CO(2) production does not account for the total glutamate internalized into astrocytes. This leads us to speculate there are many hidden functions of glutamate in neurons and astrocytes waiting to be discovered. In this review, we attempted to reexamine some of these new and older functions of glutamate and to reevaluate the roles of glutamate intoning these two cell types.