Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nature ; 615(7950): 62-66, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859585

RESUMO

For capacitive energy storage at elevated temperatures1-4, dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm-3 with a charge-discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π-π stacking interactions5,6, thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m-1 K-1. The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions.

2.
Phys Chem Chem Phys ; 26(16): 12806-12819, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38619877

RESUMO

Combining the phosphonic acid group with the sulfonic acid group in PEMs has been shown to be an effective strategy for improving the fuel cell performance. However, the interplay of two different ionic groups and the resulting effect on the membrane properties have not been fully elucidated. Here, we used classical molecular dynamics simulation to investigate the morphologies, transport properties and effects of ionic groups in a novel perfluorinated PEM containing two ionic groups (PFSA-PFPA) in comparison to the corresponding homopolymers. Phase separations between hydrophilic and hydrophobic domains are confirmed in these PEMs and result from the evolution of water clusters formed around the ionic groups. The combination of both ionic groups brings a complicated morphological feature in PFSA-PFPA, with near-cylindrical aqueous domains of large length scales interconnected by tortuous domains of small sizes. And we found that the self-diffusion coefficients of water molecules are strongly related to morphologies, with the water transport in PFSA-PFPA lying between two analogous homopolymers. At the molecular level, we found that the sulfonic and phosphonic acid groups have distinct effects on the coordination behaviors and the dynamics of water molecules and hydronium ions. Strong electrostatic interactions lead to compact coordination structures and sluggish dynamics of hydronium ions around phosphonic acid groups, which determine the morphological evolution and transport properties in PFSA-PFPA. Our study affords insights into the relationship between molecular characteristics and transport properties bridged by phase-separated morphologies in a novel PEM containing both sulfonic acid and phosphonic acid groups, which deepens the understanding of the interplay between two ionic groups and may inspire the rational design of high-performance PEMs.

3.
Chemistry ; 29(38): e202300879, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37104095

RESUMO

Inspired by carbon monoxide dehydrogenase (CODH), mimicking its inner and outer spheres is a promising strategy in CO2 reduction catalyst design. However, artificial CODH-like catalysts are generally limited to the inner sphere effect and only applicable in organic solvents or for electrocatalysis. Herein, an aqueous CODH mimic with both inner and outer spheres for photocatalysis is reported. In this polymeric unimolecular catalyst, the inner sphere is composed of cobalt porphyrin with four appended amido groups and the outer sphere consists of four poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) arms. Upon visible light irradiation (λ >420 nm), the as-prepared catalyst exhibits a turnover number (TONCO ) of 1731.2 in the reduction of CO2 into CO, which is comparable to most reported molecular catalysts in aqueous solution. The mechanism studies indicate that, in this water-dispersible and structurally well-defined CODH mimic, the cobalt porphyrin core serves as the catalysis center and the amido groups function as hydrogen-bonding pillars helping to stabilize the CO2 adduct intermediate, whereas the PDMAEMA shell renders both water solubility and a CO2 reservoir through reversibly capturing of CO2 . The present work has clarified the significance of coordination sphere effects for improving the aqueous photocatalytic CO2 reduction performance of CODH mimics.


Assuntos
Mimetismo Molecular , Soluções , Catálise , Oxirredução , Dióxido de Carbono/química , Micelas
4.
Phys Chem Chem Phys ; 25(48): 32747-32762, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047729

RESUMO

Gas sensors with exceptional sensitivity and selectivity are vital in the real-time surveillance of noxious and harmful gases. Despite this, traditional gas sensing materials still face a number of challenges, such as poor selectivity, insufficient detection limits, and short lifespan. Metal oxides, which are derived from metal-organic framework materials (MOFs), have been widely used in the field of gas sensors because they have a high surface area and large pore volume. Incorporating metal oxides derived from MOFs into gas sensors can improve their sensitivity and selectivity, thus opening up new possibilities for the development of innovative, high-performance gas sensors. This article examines the gas sensing process of metal oxide semiconductors (MOS), evaluates the advances made in the research of different structures of MOF-derived metal oxides in resistive gas sensors, and provides information on their potential applications and future advancements.

5.
Angew Chem Int Ed Engl ; 62(23): e202302126, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37051748

RESUMO

Supramolecular self-assembly is a promising strategy for stabilizing the photo-sensitive components in photocatalysis. However, the underlying correlation between the enhanced photostability and supramolecular structure at the molecular level has not yet been fully understood. Herein, we develop a biomimetic vesicular membrane-based polyporphyrin photocatalyst exhibiting excellent photocatalytic stability with at least activity time of 240 h in hydrogen generation. Time-domain ab initio modelling together with transient absorption spectroscopy, visual frontier orbitals and Gibbs free energy calculation disclose that the ordered aggregation of porphyrin units in the vesicle membrane facilitates "hot" electron relaxation and the rapid dissipation of photo-generated charges, thereby contributing to the longevity. This work deepens the molecular-level understanding on photostability and photocatalytic mechanism of supramolecular photocatalysts.

6.
J Am Chem Soc ; 144(3): 1342-1350, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029983

RESUMO

The spontaneous resolution of racemates, from natural compounds to artificial structures, has long been pursued to shed light on the origin of homochirality in life. Even though diverse synthetic systems have been elegantly devised to elaborate the underlying principles of spontaneous symmetry breaking, their complexity is still unparalleled to the natural masterpieces including DNA helix and proteins, which convey remarkable coalescence at both molecular and supramolecular levels. Here, we report on the spontaneous resolution of a pair of homochiral entities from a racemic mixture of a triply interlocked cage-catenane comprising 720 possible stereoisomers. This cage-catenane comprises six methyldithiane ring-containing linkers (denoted rac-2). As each methyldithiane ring has two chiral centers, it exhibits four possible diastereomers. These otherwise equimolar diastereomers are preferentially differentiated with the equatorial conformers over their axial analogues, leading to the dominant formation of (S, R)-2 and (R, S)-2, i.e., diastereomeric enrichment at the molecular level. This diastereomeric enrichment is unbiasedly transferred from precursor rac-2 to cage-catenane rac-4, from which a pair of homochirals (S, R)6-4 and (R, S)6-4 is narcissistically self-sorted upon crystallization. This powerful symmetry breaking is attributed to a supramolecular synergy of directional π-π stacking with the multivalency of erstwhile weak S···S contacts (with an unusual distance of 3.09 Å) that are cooperatively arranged in a helical fashion. This work highlights the attainability of complex homochiral entities by resorting to coalesced covalent and noncovalent contributions and therefore provides additional clues to the symmetry breaking of sophisticated yet well-defined architectures.


Assuntos
Catenanos
7.
Environ Sci Technol ; 56(12): 8984-8992, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638588

RESUMO

In persulfate activation by copper-based catalysts, high-valent copper (Cu(III)) is an overlooked reactive intermediate that contributes to efficient persulfate utilization and organic pollutant removal. However, the mechanisms underlying heterogeneous activation and enhanced persulfate utilization are not fully understood. Here, copper oxide (CuO) nanosheets (synthesized with a facile precipitation method) exhibited high catalytic activity for peroxymonosulfate (PMS) activation with 100% 4-chlorophenol (4-CP) degradation within 3 min. Evidence for the critical role of surface-associated Cu(III) on PMS activation and 4-CP degradation over a wide pH range (pH 3-10) was obtained using in situ Raman spectroscopy, electron paramagnetic resonance, and quenching tests. Cu(III) directly oxidized 4-CP and other phenolic pollutants, with rate constants inversely proportional to their ionization potentials. Cu(III) preferentially oxidizes 4-CP rather than react with two PMS molecules to generate one molecule of 1O2, thus minimizing this less efficient PMS utilization pathway. Accordingly, a much higher PMS utilization efficiency (77% of electrons accepted by PMS ascribed to 4-CP mineralization) was obtained with CuO/PMS than with a radical pathway-dominated Co3O4/PMS system (27%) or with the 1O2 pathway-dominated α-MnO2/PMS system (26%). Overall, these results highlight the potential benefits of PMS activation via heterogeneous high-valent copper oxidation and offer mechanistic insight into ultrahigh PMS utilization efficiency for organic pollutant removal.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cobalto , Cobre/química , Elétrons , Compostos de Manganês , Óxidos , Peróxidos/química , Fenóis , Poluentes Químicos da Água/química
8.
BMC Nephrol ; 23(1): 139, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410141

RESUMO

BACKGROUND: Minimal change disease (MCD) is a common cause of the nephrotic syndrome. Several studies have shown an increased incidence of cancer in patients with MCD. However, there are no reports on the association between MCD and gastrointestinal stromal tumor (GIST). CASE PRESENTATION: We report a case of a 66-year-old female with severe nephrotic syndrome and concomitant duodenal GIST. Immunoglobulin test showed a significant increase of IgE levels. The diagnosis of renal histopathology was MCD with subacute tubulointerstitial injury. The combination of preoperative Imatinib mesylate chemotherapy and tumor excision was accompanied by significant remission of proteinuria, and IgE level decreasing, without immunosuppressivetherapy. CONCLUSIONS: It is the first case report that MCD was associated with GIST and elevated IgE level. Clinically, in patients with elevated IgE level associated with nephrotic syndrome, the possibility of tumor must be taken into account when allergic factors are excluded.


Assuntos
Tumores do Estroma Gastrointestinal , Nefrose Lipoide , Síndrome Nefrótica , Idoso , Feminino , Tumores do Estroma Gastrointestinal/complicações , Humanos , Imunoglobulina E , Rim/patologia , Nefrose Lipoide/complicações , Nefrose Lipoide/diagnóstico , Nefrose Lipoide/tratamento farmacológico , Síndrome Nefrótica/complicações
9.
Angew Chem Int Ed Engl ; 61(52): e202213572, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36261392

RESUMO

Liposomes and polymersomes, typical vesicular drug delivery systems (DDSs), have faced some limitations in cancer theranostics. Suprasomes, supramolecular vesicles assembled from amphiphiles linked by noncovalent interactions, show potential as new generation of vesicular DDSs. We construct suprasomes based on host-guest recognition, by which the desired functions can be integrated into carriers without tedious synthesis. Photothermally active host-guest complex is formed between a functional guest and pillar[5]arene, which further self-assembles into hollow suprasomes. A supramolecular nanomedicine is developed by encapsulating cisplatin in the suprasomes. The obtained cisplatin@Suprasomes achieve excellent anticancer efficacy and anti-metastasis combining chemotherapy and photothermal therapy, which ablate the tumors without relapse and metastasis. This work demonstrates the facile functionalization of suprasomes, holding promise as alternatives to liposomes and polymersomes.


Assuntos
Lipossomos , Neoplasias , Humanos , Medicina de Precisão , Cisplatino , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
10.
Angew Chem Int Ed Engl ; 61(26): e202204440, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35438235

RESUMO

The cytoskeleton is one of the most important cellular components. Up to now, most of the reported artificial cytoskeletons are based on a gel-in-vesicle strategy. Herein, we report a membrane-bound inward-growth pathway to prepare cytoskeleton-like and radially aligned nanofibers grown from capsule membranes to get membrane-bound artificial cytoskeletons (MACs). The mechanism therein is disclosed through the direct observation of the intermediates in both dried and liquid states. Furthermore, the as-prepared MACs show a selective disassembly behavior in the presence of reductants: both capsule membranes and MACs can be disassembled or only MACs can be disassembled through the selective introduction of dynamic disulfide bonds (DS) into them and by the switch of ultraviolet (UV) irradiation. The present work provides a new hierarchical self-assembly way to construct artificial cytoskeletons with controlled compositions and orientations.


Assuntos
Citoesqueleto , Microtúbulos
11.
Angew Chem Int Ed Engl ; 61(46): e202213178, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36131490

RESUMO

This study presents interesting self-assembly of peapod-like micrometer tubes from a planet-satellite-type supramolecular megamer, which was constructed through the specific host-guest molecular recognition between azobenzene (AZO)-functionalized hyperbranched poly(ethyl-3-oxetanemethanol)-star-poly(ethylene oxide) (HSP-AZO) and ß-cyclodextrin(CD)-based hydrophilic hyperbranched polyglycerol (CD-g-HPG). A peapod-like structure with micrometer-sized tube as the pod and vesicles encapsulated inside as the peas was formed through sequential vesicle entosis, linear association, and fusion processes. Dissipative particle dynamics (DPD) simulations support the structural possibility of the supramolecular peapod formation and its mechanism. UV light irradiation could lead to the disassembly of the peapod-like structure. This study expands the family of supramolecular polymers and opens a new avenue to develop bioinspired complex hierarchical nanoarchitectures at the microscopic level.


Assuntos
Compostos Azo , Planetas , Compostos Azo/química , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis/química
12.
J Am Chem Soc ; 143(36): 14502-14510, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34476949

RESUMO

The development of light-responsive chemical systems often relies on the rational design and suitable incorporation of molecular photoswitches such as azobenzenes. Linking a photoswitch core with another π-conjugated molecular entity may give rise to intramolecular electronic coupling, which can dramatically impair the photoswitch function. Decoupling strategies have been developed based on additionally inserting a linker that can disrupt the through-bond electronic communication. Here we show that 1,2,3-triazole-a commonly used decoupling spacer-can be directly merged into the azoswitch core to construct a class of "self-decoupling" azoswitches called (hetero)arylazo-1,2,3-triazoles. Such azotriazole photoswitches are easily accessed and modularly functionalized by click chemistry. Their photoswitch property can be optimized by rational design of the substituent groups or heteroaryl rings, allowing (near-)quantitative E⇆Z photoisomerization yields and tunable Z-isomer thermal half-lives from days to years. Combined experimental and theoretical results demonstrate that the electronic structure of the photoswitch core is not substantially affected by various substituents attached to the 1,2,3-triazole unit, benefiting from its cross-conjugated nature. The combination of clickable synthesis, tunable photoswitch property, and self-decoupling ability makes (hetero)arylazo-1,2,3-triazoles intriguing molecular tools in developing photoresponsive systems with desired performance.

13.
Phys Chem Chem Phys ; 23(11): 6623-6631, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33705509

RESUMO

Surface modification with small-molecule zwitterions is experimentally proved to be an effective solution to improve the antifouling performance of polyamide membranes. However, there is no comprehensive understanding of their microscopic mechanism. In order to address this issue, in this work we constructed two atomistic models, PA (a pure polyamide membrane) and QDAP-PA (a polyamide membrane surface-modified with QDAP), where QDAP was a zwitterion that was prepared by 2,6-daaminopyridine quaternized with 3-bromopropionic acid experimentally. Density functional theory was adopted to elucidate the variations in the electrostatic potential before and after modification. Then, equilibrium molecular dynamics (EMD) simulations were conducted to investigate the structure and hydrophobic/hydrophilic nature of the membrane surface in the two models. Finally, we introduced two typical organic foulants, sodium dodecyl sulfonate (SDS) and dodecyl trimethyl ammonium chloride (DTAC), to evaluate the antifouling performance of the membranes with the umbrella sampling method. The analyses of the membrane structure and properties show that surface modification with small-molecule zwitterions can densify the membrane surface as well as enlarge the distribution of electrostatic potential on the membrane surface. Water molecules tend to have more interactions with the membrane and more hydrogen bonds near the membrane surface are observed in QDAP-PA. The antifouling test supports that QDAP-PA shows a better antifouling performance, as the surface-modified membrane exhibits a stronger resistance to SDS and DTAC. Even if the foulant is adsorbed to the membrane surface, the denser interface region can prevent a further pollution of the foulant. Also, the free energy needed during the process for QDAP-PA to desorb a foulant is relatively small, indicating that this kind of membrane is easy to clean. The current work might provide a comprehensive understanding of the enhanced fouling resistance of polyamide membranes after surface modification with small-molecule zwitterions.

14.
Angew Chem Int Ed Engl ; 60(30): 16539-16546, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33852166

RESUMO

Azobenzenes are classical molecular photoswitches that have been widely used. In recent endeavors of molecular design, replacing one or both phenyl rings with heteroaromatic rings has emerged as a strategy to expand molecular diversity and access improved photoswitching properties. Many mono-heteroaryl azo molecules with unique structures and/or properties have been developed, but the potential of bis-heteroaryl architectures is far from fully exploited. We report a family of azobispyrazoles, which combine (near-)quantitative bidirectional photoconversion and widely tunable Z-isomer thermal half-lives from hours to years. The two five-membered rings remarkably weaken the intramolecular steric hindrance, providing new possibilities for engineering the geometric and electronic structure of azo photoswitches. Azobispyrazoles generally exhibit twisted Z-isomers that facilitate complete Z→E photoisomerization, and their thermal stability can be broadly adjusted regardless of the twisted shape, overcoming the conflict between photoconversion (favored by the twisted shape) and Z-isomer stability (favored by the orthogonal shape) encountered by mono-heteroaryl azo switches.

15.
Angew Chem Int Ed Engl ; 60(27): 15080-15086, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33860594

RESUMO

Spontaneous deracemization has been used to separate homochiral domains from the racemic system. However, homochirality can only be referred to when the scales of these domains and systems are specified. To clarify this, we report self-assembly of racemates of dissymmetric cages DC-1 with a cone-shape propeller geometry, forming a centrosymmetric columnar crystalline phase (racemic at crystallographic level). Owing to their anisotropic geometry, the two enantiomers are packed in a frustrated fashion in this crystalline phase; single-handed double helices are observed (single-handedness at supramolecular level). The frustrated packing (layer continuity break-up) in turn facilitates screw dislocation during the crystal growth, forming left- or right-handed spiral platelets (symmetry-breaking at morphological level), although each platelet is composed of DC-1 racemates. The symmetry correlation between DC-1 molecules, the crystalline phase and spiral platelets, all exhibit C3 symmetry.

16.
Chemistry ; 26(69): 16497-16503, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32720370

RESUMO

Development of high-performance photocatalysts for the conversion of amines is of great importance, but has remained a challenging task. Here, a bis-anthracene fused porphyrin (AFP) was synthesized in a high yield by a facile synthetic protocol, which involves a Suzuki coupling for the conjugation of two anthracene groups with a porphyrin ring, followed by oxidative cyclodehydrogenation. When serving as a photocatalyst, AFP exhibits an outstanding photocatalytic performance for the visible-light-induced aerobic oxidation of amines to imines at ambient conditions. Density functional theory calculations revealed that the low energy band gap, caused by the large planar and π-extended porphyrin structure of AFP, contributed to its high photocatalytic performance.

17.
Phys Chem Chem Phys ; 22(43): 24934-24942, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33135025

RESUMO

Janus polymer vesicles (polymersomes) with biphasic membranes have special properties and potential applications in many fields. The big barrier for the preparation of Janus polymersomes lies in the difficulty of complete lateral microphase separation of polymers along the vesicle membrane due to the limited mobility. Herein, we present a systematic simulation study to provide a new strategy for the fabrication of Janus polymersomes based on water-in-oil-in-water double emulsions. Two incompatible block copolymers of AB and AC completely separate into two hemispheres of the polymersome driven by the dewetting of double emulsions, followed by the stabilization of the Janus structure with the block copolymers BC at the interface between AB and AC hemispheres. The simulation results demonstrate the formation of Janus polymersomes in a wide range of the incompatibility between blocks B and C. In addition, the morphologies of the Janus polymersomes can be readily regulated by changing the number of copolymers BC, the ratio of AB to AC, and the dewetting rate of organic solvents. Both the Janus and patchy polymersomes can be obtained through the adjustment of the dewetting rate. Besides, by introducing stimulus-cleavable copolymers of BC, the Janus polymersomes can perform controllable fission. Further comparison with similar experiments has also demonstrated the feasibility of our strategy. We believe the present work will be useful for the fabrication of polymersomes with controlled patches in a large quantity, and the stimulus-responsive fission process will also make the polymersomes promising in some applications like controlled drug delivery and cytomimetic membrane communication.

18.
Phys Chem Chem Phys ; 22(10): 5577-5583, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32107520

RESUMO

The ever-growing semiconductor industry has encouraged the feature dimensions of nanolithography to reach the sub-10 nm length scale. It is highly necessary to find nanolithographic materials with high performance but ultra-small domains. We have designed a series of high-χ alternating copolymers (ACPs), in which the polar and apolar repeating units are four hydroxyl groups and alkyl chains, respectively. Careful coarse-grained molecular dynamics (CG-MD) simulations demonstrate that these ACPs can form a variety of mesophases, including lamellae, perforated lamellae, and hexagonally packed cylinders. All the domain periods of these mesophases are smaller than 5 nm, and the smallest domain is close to 1 nm. Most importantly, both the phase morphologies and domain periods are independent of the molecular weight (MW) and molecular weight distribution (MWD) when the degree of polymerization (N) exceeds the threshold value. Thus, using high-χ ACPs, ultranarrow domains can be realized with high MW for sufficient material performance, while the MWD-independence can ensure the uniformity of the domain sizes. We believe that these "high χ-high N" alternating copolymers are promising alternatives as new nanolithographic materials.

19.
Phys Chem Chem Phys ; 22(39): 22324-22331, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33020779

RESUMO

CNT-based reverse osmosis membranes have long been regarded as one of the most promising candidates for water desalination. However, it is a pity that there is no complete understanding of the exact role of CNTs in those nanocomposite membranes. To address this issue, three atomistic models of PA (pure polyamide membrane), PA-CNT1 (polyamide nanocomposite membrane with an embedded carbon nanotube oriented vertical to the membrane surface) and PA-CNT2 (polyamide nanocomposite with an embedded carbon nanotube oriented parallel to the membrane surface) were constructed respectively in this work. Then, equilibrium molecular dynamics (EMD) and non-equilibrium molecular dynamics (NEMD) simulations were conducted to investigate the structure and water dynamics in these three models. The EMD simulations revealed a better stacking of the PA matrix due to the addition of the CNT and this impact was more significant in PA-CNT1 than in PA-CNT2. Meanwhile, PA matrix near the mouth of the CNT was found to behave as an obstruction that hindered the exchange of water molecules inside and outside the CNT. In NEMD simulations, we found that water molecules were guided away from the CNT because of the better stacked surrounding PA matrix. The partially covered CNT might not help to increase water flux in PA-CNT1 while guided water molecules and the smaller polymer region afftected by the CNT contributed to a relatively high flux in PA-CNT2. The current work might serve as a comprehensive understanding of the role of CNTs in the reverse osmosis process.

20.
Angew Chem Int Ed Engl ; 59(18): 7113-7121, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32003925

RESUMO

Considerable efforts have been made to increase the topological complexity of mechanically interlocked molecules over the years. Three-dimensional catenated structures composed of two or several (usually symmetrical) cages are one representative example. However, owing to the lack of an efficient universal synthetic strategy, interlocked structures made up of dissymmetric cages are relatively rare. Since the space volume of the inner cavity of an interlocked structure is smaller than that outside it, we developed a novel synthetic approach with the voluminous reductant NaBH(OAc)3 that discriminates this space difference, and therefore selectively reduces the outer surface of a catenated dimer composed of two symmetric cages, thus yielding the corresponding catenane with dissymmetric cages. Insight into the template effect that facilitates the catenation of cages was provided by computational and experimental techniques.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa