Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mol Ecol ; 32(23): 6147-6160, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271787

RESUMO

To help address the underrepresentation of arthropods and Asian biodiversity from climate-change assessments, we carried out year-long, weekly sampling campaigns with Malaise traps at different elevations and latitudes in Gaoligongshan National Park in southwestern China. From these 623 samples, we barcoded 10,524 beetles and compared scenarios of climate-change-induced biodiversity loss, by designating seasonal, elevational, and latitudinal subsets of beetles as communities that plausibly could go extinct as a group, which we call "loss sets". The availability of a published mitochondrial-genome-based phylogeny of the Coleoptera allowed us to compare the loss of species diversity with and without accounting for phylogenetic relatedness. We hypothesised that phylogenetic relatedness would mitigate extinction, since the extinction of any loss set would result in the disappearance of all its species but only part of its evolutionary history, which is still extant in the remaining loss sets. We found different patterns of community clustering by season and latitude, depending on whether phylogenetic information was incorporated. However, accounting for phylogeny only slightly mitigated the amount of biodiversity loss under climate change scenarios, against our expectations: there is no phylogenetic "escape clause" for biodiversity conservation. We achieve the same results whether phylogenetic information was derived from the mitogenome phylogeny or from a de novo barcode-gene tree. We encourage interested researchers to use this data set to study lineage-specific community assembly patterns in conjunction with life-history traits and environmental covariates.


Assuntos
Artrópodes , Besouros , Animais , Filogenia , Biodiversidade , Insetos , Evolução Biológica , Besouros/genética
2.
BMC Biol ; 19(1): 205, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526023

RESUMO

BACKGROUND: The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. RESULTS: Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. CONCLUSIONS: Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition.


Assuntos
Microbiota , Animais , Antibacterianos/farmacologia , Formigas , Evolução Biológica , RNA , Simbiose
3.
Mol Ecol ; 30(5): 1120-1135, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432777

RESUMO

High-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site-based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled "Next Generation Biodiversity Monitoring" was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3-day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS-based strategy to collectively build an integrative framework for site-based biodiversity data generation.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Chipre , Genômica , Reprodutibilidade dos Testes
4.
PLoS Comput Biol ; 15(5): e1007109, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31150382

RESUMO

Understanding the mechanisms that promote the assembly and maintenance of host-beneficial microbiomes is an open problem. Empirical evidence supports the idea that animal and plant hosts can combine 'private resources' with the ecological phenomenon known as 'community bistability' to favour some microbial strains over others. We briefly review evidence showing that hosts can: (i) protect the growth of beneficial strains in an isolated habitat, (ii) use antibiotics to suppress non-beneficial, competitor strains, and (iii) provide resources that only beneficial strains are able to translate into an increased rate of growth, reproduction, or antibiotic production. We then demonstrate in a spatially explicit, individual-based model that these three mechanisms act similarly by selectively promoting the initial proliferation of preferred strains, that is, by acting as a private resource. The faster early growth of preferred strains, combined with the phenomenon of 'community bistability,' allows those strains to continue to dominate the microbiome even after the private resource is withdrawn or made public. This is because after a beneficial colony reaches a sufficiently large size, it can resist invasion by parasites without further private support from the host. We further explicitly model localized microbial interactions and diffusion dynamics, and we show that an intermediate level of antibiotic diffusion is the most efficient mechanism in promoting preferred strains and that there is a wide range of parameters under which hosts can promote the assembly of a self-sustaining defensive microbiome. This in turn supports the idea that hosts readily evolve to promote host-beneficial defensive microbiomes.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Microbiota/fisiologia , Animais , Antibacterianos/biossíntese , Biologia Computacional , Ecossistema , Modelos Biológicos , Simbiose/fisiologia
5.
Mol Ecol ; 27(20): 3968-3975, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30129071

RESUMO

Metabarcoding of complex metazoan communities is increasingly being used to measure biodiversity in terrestrial, freshwater and marine ecosystems, revolutionizing our ability to observe patterns and infer processes regarding the origin and conservation of biodiversity. A fundamentally important question is which genetic marker to amplify, and although the mitochondrial cytochrome oxidase subunit I (COI) gene is one of the more widely used markers in metabarcoding for the Metazoa, doubts have recently been raised about its suitability. We argue that (a) the extensive coverage of reference sequence databases for COI; (b) the variation it presents; (c) the comparative advantages for denoising protein-coding genes; and (d) recent advances in DNA sequencing protocols argue in favour of standardizing for the use of COI for metazoan community samples. We also highlight where research efforts should focus to maximize the utility of metabarcoding.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Animais , Biodiversidade , Complexo IV da Cadeia de Transporte de Elétrons/genética
6.
Mol Ecol ; 27(1): 146-166, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29113023

RESUMO

Biomonitoring underpins the environmental assessment of freshwater ecosystems and guides management and conservation. Current methodology for surveys of (macro)invertebrates uses coarse taxonomic identification where species-level resolution is difficult to obtain. Next-generation sequencing of entire assemblages (metabarcoding) provides a new approach for species detection, but requires further validation. We used metabarcoding of invertebrate assemblages with two fragments of the cox1 "barcode" and partial nuclear ribosomal (SSU) genes, to assess the effects of a pesticide spill in the River Kennet (southern England). Operational taxonomic unit (OTU) recovery was tested under 72 parameters (read denoising, filtering, pair merging and clustering). Similar taxonomic profiles were obtained under a broad range of parameters. The SSU marker recovered Platyhelminthes and Nematoda, missed by cox1, while Rotifera were only amplified with cox1. A reference set was created from all available barcode entries for Arthropoda in the BOLD database and clustered into OTUs. The River Kennet metabarcoding produced matches to 207 of these reference OTUs, five times the number of species recognized with morphological monitoring. The increase was due to the following: greater taxonomic resolution (e.g., splitting a single morphotaxon "Chironomidae" into 55 named OTUs); splitting of Linnaean binomials into multiple molecular OTUs; and the use of a filtration-flotation protocol for extraction of minute specimens (meiofauna). Community analyses revealed strong differences between "impacted" vs. "control" samples, detectable with each gene marker, for each major taxonomic group, and for meio- and macrofaunal samples separately. Thus, highly resolved taxonomic data can be extracted at a fraction of the time and cost of traditional nonmolecular methods, opening new avenues for freshwater invertebrate biodiversity monitoring and molecular ecology.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental , Água Doce , Invertebrados/efeitos dos fármacos , Metagenômica , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade da Espécie
7.
Proc Natl Acad Sci U S A ; 111(40): 14388-93, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246593

RESUMO

A large literature proposes that preferences for exaggerated sex typicality in human faces (masculinity/femininity) reflect a long evolutionary history of sexual and social selection. This proposal implies that dimorphism was important to judgments of attractiveness and personality in ancestral environments. It is difficult to evaluate, however, because most available data come from large-scale, industrialized, urban populations. Here, we report the results for 12 populations with very diverse levels of economic development. Surprisingly, preferences for exaggerated sex-specific traits are only found in the novel, highly developed environments. Similarly, perceptions that masculine males look aggressive increase strongly with development and, specifically, urbanization. These data challenge the hypothesis that facial dimorphism was an important ancestral signal of heritable mate value. One possibility is that highly developed environments provide novel opportunities to discern relationships between facial traits and behavior by exposing individuals to large numbers of unfamiliar faces, revealing patterns too subtle to detect with smaller samples.


Assuntos
Beleza , Evolução Biológica , Comportamento de Escolha/fisiologia , Face , Personalidade , Adulto , Comparação Transcultural , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Masculinidade , Análise de Regressão , Percepção Visual/fisiologia
8.
Mol Ecol ; 25(17): 4407-19, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27474399

RESUMO

Plant diversity surely determines arthropod diversity, but only moderate correlations between arthropod and plant species richness had been observed until Basset et al. (Science, 338, 2012 and 1481) finally undertook an unprecedentedly comprehensive sampling of a tropical forest and demonstrated that plant species richness could indeed accurately predict arthropod species richness. We now require a high-throughput pipeline to operationalize this result so that we can (i) test competing explanations for tropical arthropod megadiversity, (ii) improve estimates of global eukaryotic species diversity, and (iii) use plant and arthropod communities as efficient proxies for each other, thus improving the efficiency of conservation planning and of detecting forest degradation and recovery. We therefore applied metabarcoding to Malaise-trap samples across two tropical landscapes in China. We demonstrate that plant species richness can accurately predict arthropod (mostly insect) species richness and that plant and insect community compositions are highly correlated, even in landscapes that are large, heterogeneous and anthropogenically modified. Finally, we review how metabarcoding makes feasible highly replicated tests of the major competing explanations for tropical megadiversity.


Assuntos
Biodiversidade , Insetos/classificação , Plantas/classificação , Clima Tropical , Animais , China , Código de Barras de DNA Taxonômico
9.
Front Zool ; 12: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26430464

RESUMO

Invertebrate-derived DNA (iDNA) from terrestrial haematophagous leeches has recently been proposed as a powerful non-invasive tool with which to detect vertebrate species and thus to survey their populations. However, to date little attention has been given to whether and how this, or indeed any other iDNA-derived data, can be combined with state-of-the-art analytical tools to estimate wildlife abundances, population dynamics and distributions. In this review, we discuss the challenges that face the application of existing analytical methods such as site-occupancy and spatial capture-recapture (SCR) models to terrestrial leech iDNA, in particular, possible violations of key assumptions arising from factors intrinsic to invertebrate parasite biology. Specifically, we review the advantages and disadvantages of terrestrial leeches as a source of iDNA and summarize the utility of leeches for presence, occupancy, and spatial capture-recapture models. The main source of uncertainty that attends species detections derived from leech gut contents is attributable to uncertainty about the spatio-temporal sampling frame, since leeches retain host-blood for months and can move after feeding. Subsequently, we briefly address how the analytical challenges associated with leeches may apply to other sources of iDNA. Our review highlights that despite the considerable potential of leech (and indeed any) iDNA as a new survey tool, further pilot studies are needed to assess how analytical methods can overcome or not the potential biases and assumption violations of the new field of iDNA. Specifically we argue that studies to compare iDNA sampling with standard survey methods such as camera trapping, and those to improve our knowledge on leech (and other invertebrate parasite) physiology, taxonomy, and ecology will be of immense future value.

10.
Conserv Biol ; 29(5): 1368-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26171762

RESUMO

There is profound interest in knowing the degree to which China's institutions are capable of protecting its natural forests and biodiversity in the face of economic and political change. China's 2 most important forest-protection policies are its National Forest Protection Program (NFPP) and its national-level nature reserves (NNRs). The NFPP was implemented in 2000 in response to deforestation-caused flooding. We undertook the first national, quantitative assessment of the NFPP and NNRs to examine whether the NFPP achieved its deforestation-reduction target and whether the NNRs deter deforestation altogether. We used MODIS data to estimate forest cover and loss across mainland China (2000-2010). We also assembled the first-ever polygon dataset for China's forested NNRs (n = 237, 74,030 km(2) in 2000) and used both conventional and covariate-matching approaches to compare deforestation rates inside and outside NNRs (2000-2010). In 2000, 1.765 million km(2) or 18.7% of mainland China was forested (12.3% with canopy cover of ≥70%)) or woodland (6.4% with canopy cover <70% and tree plus shrub cover ≥40%). By 2010, 480,203 km(2) of forest and woodland had been lost, an annual deforestation rate of 2.7%. Forest-only loss was 127,473 km(2) (1.05% annually). In the NFPP provinces, the forest-only loss rate was 0.62%, which was 3.3 times lower than in the non-NFPP provinces. Moreover, the Landsat data suggest that these loss rates are overestimates due to large MODIS pixel size. Thus, China appears to have achieved, and even exceeded, its target of reducing deforestation to 1.1% annually in the NFPP provinces. About two-thirds of China's NNRs were effective in protecting forest cover (prevented loss 4073 km(2) unmatched approach; 3148 km(2) matched approach), and within-NNR deforestation rates were higher in provinces with higher overall deforestation. Our results indicate that China's existing institutions can protect domestic forest cover.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Agricultura Florestal , Florestas , China , Parques Recreativos
11.
Ecol Appl ; 24(8): 2029-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29185670

RESUMO

Strong global demand for tropical timber and agricultural products has driven large-scale logging and subsequent conversion of tropical forests. Given that the majority of tropical landscapes have been or will likely be logged, the protection of biodiversity within tropical forests thus depends on whether species can persist in these economically exploited lands, and if species cannot persist, whether we can protect enough primary forest from logging and conversion. However, our knowledge of the impact of logging and conversion on biodiversity is limited to a few taxa, often sampled in different locations with complex land-use histories, hampering attempts to plan cost-effective conservation strategies and to draw conclusions across taxa. Spanning a land-use gradient of primary forest, once- and twice-logged forests, and oil palm plantations, we used traditional sampling and DNA metabarcoding to compile an extensive data set in Sabah, Malaysian Borneo for nine vertebrate and invertebrate taxa to quantify the biological impacts of logging and oil palm, develop cost-effective methods of protecting biodiversity, and examine whether there is congruence in response among taxa. Logged forests retained high species richness, including, on average, 70% of species found in primary forest. In contrast, conversion to oil palm dramatically reduces species richness, with significantly fewer primary-forest species than found on logged forest transects for seven taxa. Using a systematic conservation planning analysis, we show that efficient protection of primary-forest species is achieved with land portfolios that include a large proportion of logged-forest plots. Protecting logged forests is thus a cost-effective method of protecting an ecologically and taxonomically diverse range of species, particularly when conservation budgets are limited. Six indicator groups (birds, leaf-litter ants, beetles, aerial hymenopterans, flies, and true bugs) proved to be consistently good predictors of the response of the other taxa to logging and oil palm. Our results confidently establish the high conservation value of logged forests and the low value of oil palm. Cross-taxon congruence in responses to disturbance also suggests that the practice of focusing on key indicator taxa yields important information of general biodiversity in studies of logging and oil palm.


Assuntos
Agricultura , Arecaceae/fisiologia , Biodiversidade , Conservação dos Recursos Naturais/métodos , Agricultura Florestal , Floresta Úmida , Animais , Monitoramento Ambiental/métodos
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230123, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705177

RESUMO

Arthropods contribute importantly to ecosystem functioning but remain understudied. This undermines the validity of conservation decisions. Modern methods are now making arthropods easier to study, since arthropods can be mass-trapped, mass-identified, and semi-mass-quantified into 'many-row (observation), many-column (species)' datasets, with homogeneous error, high resolution, and copious environmental-covariate information. These 'novel community datasets' let us efficiently generate information on arthropod species distributions, conservation values, uncertainty, and the magnitude and direction of human impacts. We use a DNA-based method (barcode mapping) to produce an arthropod-community dataset from 121 Malaise-trap samples, and combine it with 29 remote-imagery layers using a deep neural net in a joint species distribution model. With this approach, we generate distribution maps for 76 arthropod species across a 225 km2 temperate-zone forested landscape. We combine the maps to visualize the fine-scale spatial distributions of species richness, community composition, and site irreplaceability. Old-growth forests show distinct community composition and higher species richness, and stream courses have the highest site-irreplaceability values. With this 'sideways biodiversity modelling' method, we demonstrate the feasibility of biodiversity mapping at sufficient spatial resolution to inform local management choices, while also being efficient enough to scale up to thousands of square kilometres. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Artrópodes , Biodiversidade , DNA Ambiental , Tecnologia de Sensoriamento Remoto , Artrópodes/classificação , Animais , DNA Ambiental/análise , Tecnologia de Sensoriamento Remoto/métodos , Florestas , Distribuição Animal , Código de Barras de DNA Taxonômico/métodos
13.
Trends Ecol Evol ; 39(3): 280-293, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37949795

RESUMO

New technologies for monitoring biodiversity such as environmental (e)DNA, passive acoustic monitoring, and optical sensors promise to generate automated spatiotemporal community observations at unprecedented scales and resolutions. Here, we introduce 'novel community data' as an umbrella term for these data. We review the emerging field around novel community data, focusing on new ecological questions that could be addressed; the analytical tools available or needed to make best use of these data; and the potential implications of these developments for policy and conservation. We conclude that novel community data offer many opportunities to advance our understanding of fundamental ecological processes, including community assembly, biotic interactions, micro- and macroevolution, and overall ecosystem functioning.


Assuntos
Biodiversidade , Ecossistema , DNA , Políticas
14.
Ecol Lett ; 16(10): 1245-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23910579

RESUMO

To manage and conserve biodiversity, one must know what is being lost, where, and why, as well as which remedies are likely to be most effective. Metabarcoding technology can characterise the species compositions of mass samples of eukaryotes or of environmental DNA. Here, we validate metabarcoding by testing it against three high-quality standard data sets that were collected in Malaysia (tropical), China (subtropical) and the United Kingdom (temperate) and that comprised 55,813 arthropod and bird specimens identified to species level with the expenditure of 2,505 person-hours of taxonomic expertise. The metabarcode and standard data sets exhibit statistically correlated alpha- and beta-diversities, and the two data sets produce similar policy conclusions for two conservation applications: restoration ecology and systematic conservation planning. Compared with standard biodiversity data sets, metabarcoded samples are taxonomically more comprehensive, many times quicker to produce, less reliant on taxonomic expertise and auditable by third parties, which is essential for dispute resolution.


Assuntos
Biodiversidade , Ecologia/métodos , Processamento Eletrônico de Dados , Monitoramento Ambiental/métodos , Animais , Artrópodes/fisiologia , Biologia Computacional
15.
Proc Natl Acad Sci U S A ; 107(36): 15712-6, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20733067

RESUMO

Although mutualisms are common in all ecological communities and have played key roles in the diversification of life, our current understanding of the evolution of cooperation applies mostly to social behavior within a species. A central question is whether mutualisms persist because hosts have evolved costly punishment of cheaters. Here, we use the economic theory of employment contracts to formulate and distinguish between two mechanisms that have been proposed to prevent cheating in host-symbiont mutualisms, partner fidelity feedback (PFF) and host sanctions (HS). Under PFF, positive feedback between host fitness and symbiont fitness is sufficient to prevent cheating; in contrast, HS posits the necessity of costly punishment to maintain mutualism. A coevolutionary model of mutualism finds that HS are unlikely to evolve de novo, and published data on legume-rhizobia and yucca-moth mutualisms are consistent with PFF and not with HS. Thus, in systems considered to be textbook cases of HS, we find poor support for the theory that hosts have evolved to punish cheating symbionts; instead, we show that even horizontally transmitted mutualisms can be stabilized via PFF. PFF theory may place previously underappreciated constraints on the evolution of mutualism and explain why punishment is far from ubiquitous in nature.


Assuntos
Economia , Modelos Teóricos , Simbiose , Animais
16.
Mol Ecol Resour ; 23(1): 174-189, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35986714

RESUMO

The accurate extraction of species-abundance information from DNA-based data (metabarcoding, metagenomics) could contribute usefully to diet analysis and food-web reconstruction, the inference of species interactions, the modelling of population dynamics and species distributions, the biomonitoring of environmental state and change, and the inference of false positives and negatives. However, multiple sources of bias and noise in sampling and processing combine to inject error into DNA-based data sets. To understand how to extract abundance information, it is useful to distinguish two concepts. (i) Within-sample across-species quantification describes relative species abundances in one sample. (ii) Across-sample within-species quantification describes how the abundance of each individual species varies from sample to sample, such as over a time series, an environmental gradient or different experimental treatments. First, we review the literature on methods to recover across-species abundance information (by removing what we call "species pipeline biases") and within-species abundance information (by removing what we call "pipeline noise"). We argue that many ecological questions can be answered with just within-species quantification, and we therefore demonstrate how to use a "DNA spike-in" to correct for pipeline noise and recover within-species abundance information. We also introduce a model-based estimator that can be used on data sets without a physical spike-in to approximate and correct for pipeline noise.


Assuntos
Código de Barras de DNA Taxonômico , Metagenômica , Código de Barras de DNA Taxonômico/métodos , Metagenômica/métodos , DNA/genética , Biodiversidade
17.
BMC Bioinformatics ; 13 Suppl 6: S1, 2012 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-22537038

RESUMO

BACKGROUND: The very large memory requirements for the construction of assembly graphs for de novo genome assembly limit current algorithms to super-computing environments. METHODS: In this paper, we demonstrate that constructing a sparse assembly graph which stores only a small fraction of the observed k-mers as nodes and the links between these nodes allows the de novo assembly of even moderately-sized genomes (~500 M) on a typical laptop computer. RESULTS: We implement this sparse graph concept in a proof-of-principle software package, SparseAssembler, utilizing a new sparse k-mer graph structure evolved from the de Bruijn graph. We test our SparseAssembler with both simulated and real data, achieving ~90% memory savings and retaining high assembly accuracy, without sacrificing speed in comparison to existing de novo assemblers.


Assuntos
Dispositivos de Armazenamento em Computador , Genoma , Software , Algoritmos , Escherichia coli/genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
18.
Ecol Lett ; 15(11): 1300-1307, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22913725

RESUMO

There is great interest in explaining how beneficial microbiomes are assembled. Antibiotic-producing microbiomes are arguably the most abundant class of beneficial microbiome in nature, having been found on corals, arthropods, molluscs, vertebrates and plant rhizospheres. An exemplar is the attine ants, which cultivate a fungus for food and host a cuticular microbiome that releases antibiotics to defend the fungus from parasites. One explanation posits long-term vertical transmission of Pseudonocardia bacteria, which (somehow) evolve new compounds in arms-race fashion against parasites. Alternatively, attines (somehow) selectively recruit multiple, non-coevolved actinobacterial genera from the soil, enabling a 'multi-drug' strategy against parasites. We reconcile the models by showing that when hosts fuel interference competition by providing abundant resources, the interference competition favours the recruitment of antibiotic-producing (and -resistant) bacteria. This partner-choice mechanism is more effective when at least one actinobacterial symbiont is vertically transmitted or has a high immigration rate, as in disease-suppressive soils.


Assuntos
Antibacterianos/metabolismo , Formigas/microbiologia , Evolução Biológica , Interações Hospedeiro-Parasita , Metagenoma , Animais , Formigas/fisiologia , Resistência Microbiana a Medicamentos , Modelos Teóricos , Dinâmica Populacional , Microbiologia do Solo , Simbiose
19.
Antonie Van Leeuwenhoek ; 101(2): 443-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21748399

RESUMO

Fungus-growing attine ants use natural-product antibiotics produced by mutualist actinobacteria as 'weedkillers' in their fungal gardens. Here we report for the first time that fungus-growing Allomerus ants, which lie outside the tribe Attini, are associated with antifungal-producing actinobacteria, which offer them protection against non-cultivar fungi isolated from their ant-plants.


Assuntos
Actinobacteria/fisiologia , Antibacterianos/metabolismo , Formigas/microbiologia , Formigas/fisiologia , Fungos/crescimento & desenvolvimento , Simbiose , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Antibacterianos/farmacologia , Fungos/efeitos dos fármacos , Dados de Sequência Molecular
20.
Mol Ecol Resour ; 22(4): 1231-1246, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34551203

RESUMO

Metabarcoding of DNA extracted from environmental or bulk specimen samples is increasingly used to profile biota in basic and applied biodiversity research because of its targeted nature that allows sequencing of genetic markers from many samples in parallel. To achieve this, PCR amplification is carried out with primers designed to target a taxonomically informative marker within a taxonomic group, and sample-specific nucleotide identifiers are added to the amplicons prior to sequencing. The latter enables assignment of the sequences back to the samples they originated from. Nucleotide identifiers can be added during the metabarcoding PCR and during "library preparation", that is, when amplicons are prepared for sequencing. Different strategies to achieve this labelling exist. All have advantages, challenges and limitations, some of which can lead to misleading results, and in the worst case compromise the fidelity of the metabarcoding data. Given the range of questions addressed using metabarcoding, ensuring that data generation is robust and fit for the chosen purpose is critically important for practitioners seeking to employ metabarcoding for biodiversity assessments. Here, we present an overview of the three main workflows for sample-specific labelling and library preparation in metabarcoding studies on Illumina sequencing platforms; one-step PCR, two-step PCR, and tagged PCR. Further, we distill the key considerations for researchers seeking to select an appropriate metabarcoding strategy for their specific study. Ultimately, by gaining insights into the consequences of different metabarcoding workflows, we hope to further consolidate the power of metabarcoding as a tool to assess biodiversity across a range of applications.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Código de Barras de DNA Taxonômico/métodos , Primers do DNA/genética , Biblioteca Gênica , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa