Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 489(7416): 385-90, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22914087

RESUMO

Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel Na(V)1.1 causes Dravet's syndrome, a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit and autism-spectrum behaviours. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome are poorly understood. Here we report that mice with Scn1a haploinsufficiency exhibit hyperactivity, stereotyped behaviours, social interaction deficits and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odours and social odours are aversive to Scn1a(+/-) mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of Na(V)1.1 channels in forebrain interneurons is sufficient to cause these behavioural and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABA(A) receptors, completely rescued the abnormal social behaviours and deficits in fear memory in the mouse model of Dravet's syndrome, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for Na(V)1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome.


Assuntos
Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/fisiopatologia , Moduladores GABAérgicos/uso terapêutico , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Ansiedade/fisiopatologia , Transtorno Autístico/complicações , Transtorno Autístico/genética , Clonazepam/farmacologia , Clonazepam/uso terapêutico , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Moduladores GABAérgicos/farmacologia , Neurônios GABAérgicos/metabolismo , Haploinsuficiência/genética , Heterozigoto , Hipocampo/citologia , Proteínas de Homeodomínio/genética , Hipercinese/fisiopatologia , Interneurônios/metabolismo , Masculino , Memória , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1 , Comportamento Social , Percepção Espacial , Transtorno de Movimento Estereotipado/fisiopatologia , Síndrome , Fatores de Transcrição/genética
2.
Neurobiol Dis ; 73: 106-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281316

RESUMO

Dominant loss-of-function mutations in voltage-gated sodium channel NaV1.1 cause Dravet Syndrome, an intractable childhood-onset epilepsy. NaV1.1(+/-) Dravet Syndrome mice in C57BL/6 genetic background exhibit severe seizures, cognitive and social impairments, and premature death. Here we show that Dravet Syndrome mice in pure 129/SvJ genetic background have many fewer seizures and much less premature death than in pure C57BL/6 background. These mice also have a higher threshold for thermally induced seizures, fewer myoclonic seizures, and no cognitive impairment, similar to patients with Genetic Epilepsy with Febrile Seizures Plus. Consistent with this mild phenotype, mutation of NaV1.1 channels has much less physiological effect on neuronal excitability in 129/SvJ mice. In hippocampal slices, the excitability of CA1 Stratum Oriens interneurons is selectively impaired, while the excitability of CA1 pyramidal cells is unaffected. NaV1.1 haploinsufficiency results in increased rheobase and threshold for action potential firing and impaired ability to sustain high-frequency firing. Moreover, deletion of NaV1.1 markedly reduces the amplification and integration of synaptic events, further contributing to reduced excitability of interneurons. Excitability is less impaired in inhibitory neurons of Dravet Syndrome mice in 129/SvJ genetic background. Because specific deletion of NaV1.1 in forebrain GABAergic interneuons is sufficient to cause the symptoms of Dravet Syndrome in mice, our results support the conclusion that the milder phenotype in 129/SvJ mice is caused by lesser impairment of sodium channel function and electrical excitability in their forebrain interneurons. This mild impairment of excitability of interneurons leads to a milder disease phenotype in 129/SvJ mice, similar to Genetic Epilepsy with Febrile Seizures Plus in humans.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Inibição Neural/genética , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Fenômenos Biofísicos/genética , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Epilepsias Mioclônicas/etiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Medo/psicologia , Hipocampo/citologia , Hipertermia Induzida/efeitos adversos , Técnicas In Vitro , Lidocaína/análogos & derivados , Lidocaína/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia
3.
Proc Natl Acad Sci U S A ; 109(6): E368-77, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22223655

RESUMO

Na(V)1.1 is the primary voltage-gated Na(+) channel in several classes of GABAergic interneurons, and its reduced activity leads to reduced excitability and decreased GABAergic tone. Here, we show that Na(V)1.1 channels are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus. Mice carrying a heterozygous loss of function mutation in the Scn1a gene (Scn1a(+/-)), which encodes the pore-forming α-subunit of the Na(V)1.1 channel, have longer circadian period than WT mice and lack light-induced phase shifts. In contrast, Scn1a(+/-) mice have exaggerated light-induced negative-masking behavior and normal electroretinogram, suggesting an intact retina light response. Scn1a(+/-) mice show normal light induction of c-Fos and mPer1 mRNA in ventral SCN but impaired gene expression responses in dorsal SCN. Electrical stimulation of the optic chiasm elicits reduced calcium transients and impaired ventro-dorsal communication in SCN neurons from Scn1a(+/-) mice, and this communication is barely detectable in the homozygous gene KO (Scn1a(-/-)). Enhancement of GABAergic transmission with tiagabine plus clonazepam partially rescues the effects of deletion of Na(V)1.1 on circadian period and phase shifting. Our report demonstrates that a specific voltage-gated Na(+) channel and its associated impairment of SCN interneuronal communication lead to major deficits in the function of the master circadian pacemaker. Heterozygous loss of Na(V)1.1 channels is the underlying cause for severe myoclonic epilepsy of infancy; the circadian deficits that we report may contribute to sleep disorders in severe myoclonic epilepsy of infancy patients.


Assuntos
Comunicação Celular , Ritmo Circadiano/fisiologia , Espaço Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/metabolismo , Animais , Comportamento Animal/efeitos da radiação , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Comunicação Celular/genética , Comunicação Celular/efeitos da radiação , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Eletrorretinografia , Espaço Extracelular/efeitos da radiação , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.1 , Fenótipo , Estimulação Luminosa , Transdução de Sinais/genética , Núcleo Supraquiasmático/efeitos da radiação , Transmissão Sináptica/genética , Transmissão Sináptica/efeitos da radiação
4.
Proc Natl Acad Sci U S A ; 109(36): 14646-51, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22908258

RESUMO

Heterozygous loss-of-function mutations in the brain sodium channel Na(V)1.1 cause Dravet syndrome (DS), a pharmacoresistant infantile-onset epilepsy syndrome with comorbidities of cognitive impairment and premature death. Previous studies using a mouse model of DS revealed reduced sodium currents and impaired excitability in GABAergic interneurons in the hippocampus, leading to the hypothesis that impaired excitability of GABAergic inhibitory neurons is the cause of epilepsy and premature death in DS. However, other classes of GABAergic interneurons are less impaired, so the direct cause of hyperexcitability, epilepsy, and premature death has remained unresolved. We generated a floxed Scn1a mouse line and used the Cre-Lox method driven by an enhancer from the Dlx1,2 locus for conditional deletion of Scn1a in forebrain GABAergic neurons. Immunocytochemical studies demonstrated selective loss of Na(V)1.1 channels in GABAergic interneurons in cerebral cortex and hippocampus. Mice with this deletion died prematurely following generalized tonic-clonic seizures, and they were equally susceptible to thermal induction of seizures as mice with global deletion of Scn1a. Evidently, loss of Na(V)1.1 channels in forebrain GABAergic neurons is both necessary and sufficient to cause epilepsy and premature death in DS.


Assuntos
Epilepsias Mioclônicas/genética , Interneurônios/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/deficiência , Animais , Eletrocardiografia , Eletroencefalografia , Epilepsias Mioclônicas/patologia , Hipocampo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Plasmídeos/genética , Prosencéfalo/metabolismo
5.
Exp Cell Res ; 319(3): 153-60, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23063429

RESUMO

Gö6976 is a nonglycosidic indolocarbazole compound widely used as a specific inhibitor of PKCα/ß. In experiments probing for a role of PKCα in human laminin-2-integrin-mediated cell adhesion and spreading of PC12 cells, we observed unexpected enhancements of adhesion, spreading and stress fiber formation to 1 µM Gö6976 with concomitant increase in membrane translocation of PKCδ and autophosphorylation of focal adhesion kinase (FAK). Importantly, enhanced cellular behavior and membrane translocation of PKCδ induced by Gö6976 was retained in siRNA-transfected PC12 cells to knockdown PKCα expression. Gö6976 also induced laminin-dependent cell adhesion in NIH/3T3 and CV-1 fibroblasts, suggesting of a mechanism that may be common to multiple cell-types. A specific inhibitor of PKCδ, rottlerin, completely abrogated Gö6976-dependent increase in PC12 cell adhesion to laminin as well as the activation of small GTPases, Rac1 and Cdc42, that are downstream of PKCδ in adhesion receptor signaling. siRNA knockdown of Rac1 and Cdc42 expression inhibited cell spreading and lamellipodia formation in PC12 cells. Overall, these results suggest that Gö6976 may stimulate membrane recruitment of PKCδ through a mechanism that is independent of PKCα/ß signaling. In addition, the activation of Rac1 and Cdc42 by human laminin-2-integrin-dependent activation of PKCδ/FAK signaling mediates cell spreading and lamellipodia formation in PC12 cells.


Assuntos
Carbazóis/farmacologia , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Quinase C-delta/fisiologia , Animais , Adesão Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Células Cultivadas , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Células PC12 , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C beta , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-delta/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Regulação para Cima/efeitos dos fármacos
6.
J Biol Chem ; 286(14): 12627-39, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21224388

RESUMO

Regulation of CaV1.2 channels in cardiac myocytes by the ß-adrenergic pathway requires a signaling complex in which the proteolytically processed distal C-terminal domain acts as an autoinhibitor of channel activity and mediates up-regulation by the ß-adrenergic receptor and PKA bound to A-kinase anchoring protein 15 (AKAP15). We examined the significance of this distal C-terminal signaling complex for CaV1.2 and CaV1.3 channels in neurons. AKAP15 co-immunoprecipitates with CaV1.2 and CaV1.3 channels. AKAP15 has overlapping localization with CaV1.2 and CaV1.3 channels in cell bodies and proximal dendrites and is closely co-localized with CaV1.2 channels in punctate clusters. The neuronal AKAP MAP2B, which also interacts with CaV1.2 and CaV1.3 channels, has complementary localization to AKAP15, suggesting different functional roles in calcium channel regulation. Studies with mice that lack the distal C-terminal domain of CaV1.2 channels (CaV1.2ΔDCT) reveal that AKAP15 interacts with neuronal CaV1.2 channels via their C terminus in vivo and is co-localized in punctate clusters of CaV1.2 channels via that interaction. CaV1.2ΔDCT neurons have reduced L-type calcium current, indicating that the distal C-terminal domain is required for normal functional expression in vivo. Deletion of the distal C-terminal domain impairs calcium-dependent signaling from CaV1.2 channels to the nucleus, as shown by reduction in phosphorylation of the cAMP response element-binding protein. Our results define AKAP signaling complexes of CaV1.2 and CaV1.3 channels in brain and reveal three previously unrecognized functional roles for the distal C terminus of neuronal CaV1.2 channels in vivo: increased functional expression, anchoring of AKAP15 and PKA, and initiation of excitation-transcription coupling.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Encéfalo/citologia , Canais de Cálcio Tipo L/metabolismo , Neurônios/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Canais de Cálcio Tipo L/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Hipocampo/citologia , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Mutantes , Fosforilação , Ligação Proteica , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
J Biol Chem ; 286(14): 12617-26, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21216955

RESUMO

L-type calcium currents conducted by CaV1.2 channels initiate excitation-contraction coupling in cardiac and vascular smooth muscle. In the heart, the distal portion of the C terminus (DCT) is proteolytically processed in vivo and serves as a noncovalently associated autoinhibitor of CaV1.2 channel activity. This autoinhibitory complex, with A-kinase anchoring protein-15 (AKAP15) bound to the DCT, is hypothesized to serve as the substrate for ß-adrenergic regulation in the fight-or-flight response. Mice expressing CaV1.2 channels with the distal C terminus deleted (DCT-/-) develop cardiac hypertrophy and die prematurely after E15. Cardiac hypertrophy and survival rate were improved by drug treatments that reduce peripheral vascular resistance and hypertension, consistent with the hypothesis that CaV1.2 hyperactivity in vascular smooth muscle causes hypertension, hypertrophy, and premature death. However, in contrast to expectation, L-type Ca2+ currents in cardiac myocytes from DCT-/- mice were dramatically reduced due to decreased cell-surface expression of CaV1.2 protein, and the voltage dependence of activation and the kinetics of inactivation were altered. CaV1.2 channels in DCT-/- myocytes fail to respond to activation of adenylyl cyclase by forskolin, and the localized expression of AKAP15 is reduced. Therefore, we conclude that the DCT of CaV1.2 channels is required in vivo for normal vascular regulation, cell-surface expression of CaV1.2 channels in cardiac myocytes, and ß-adrenergic stimulation of L-type Ca2+ currents in the heart.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eletrofisiologia , Feminino , Genótipo , Insuficiência Cardíaca/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes , Miócitos Cardíacos/metabolismo , Fenótipo , Fosforilação , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Proc Natl Acad Sci U S A ; 106(10): 3994-9, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19234123

RESUMO

Heterozygous loss-of-function mutations in the alpha subunit of the type I voltage-gated sodium channel Na(V)1.1 cause severe myoclonic epilepsy in infancy (SMEI), an infantile-onset epileptic encephalopathy characterized by normal development followed by treatment-refractory febrile and afebrile seizures and psychomotor decline. Mice with SMEI (mSMEI), created by heterozygous deletion of Na(V)1.1 channels, develop seizures and ataxia. Here we investigated the temperature and age dependence of seizures and interictal epileptiform spike-and-wave activity in mSMEI. Combined video-EEG monitoring demonstrated that mSMEI had seizures induced by elevated body core temperature but wild-type mice were unaffected. In the 3 age groups tested, no postnatal day (P)17-18 mSMEI had temperature-induced seizures, but nearly all P20-22 and P30-46 mSMEI had myoclonic seizures followed by generalized seizures caused by elevated core body temperature. Spontaneous seizures were only observed in mice older than P32, suggesting that mSMEI become susceptible to temperature-induced seizures before spontaneous seizures. Interictal spike activity was seen at normal body temperature in most P30-46 mSMEI but not in P20-22 or P17-18 mSMEI, indicating that interictal epileptic activity correlates with seizure susceptibility. Most P20-22 mSMEI had interictal spike activity with elevated body temperature. Our results define a critical developmental transition for susceptibility to seizures in SMEI, demonstrate that body temperature elevation alone is sufficient to induce seizures, and reveal a close correspondence between human and mouse SMEI in the striking temperature and age dependence of seizure frequency and severity and in the temperature dependence and frequency of interictal epileptiform spike activity.


Assuntos
Envelhecimento/patologia , Epilepsias Mioclônicas/complicações , Convulsões/complicações , Temperatura , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Eletroencefalografia , Camundongos
10.
Neuron ; 52(5): 743-4, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17145494

RESUMO

Paroxysmal extreme pain disorder (PEPD), previously known as familial rectal pain (FRP, OMIM 167400), is an inherited disease causing intense burning rectal, ocular, and submandibular pain and flushing. Fertleman et al. (this issue of Neuron) show that mutations in SCN9A, the gene encoding the sodium channel Na(V)1.7 channels, are responsible for this syndrome. Together with earlier work implicating a distinct class of functional mutations in SCN9A in a distinct inherited pain syndrome, these results point to Na(V)1.7 channels as key players in signaling nociceptive information and as a potential target for drug therapy of chronic pain.


Assuntos
Neuralgia/genética , Doenças Retais/genética , Canais de Sódio/genética , Canais de Sódio/fisiologia , Humanos , Mutação/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7
11.
Neuron ; 49(3): 409-20, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16446144

RESUMO

Neurotransmitters modulate sodium channel availability through activation of G protein-coupled receptors, cAMP-dependent protein kinase (PKA), and protein kinase C (PKC). Voltage-dependent slow inactivation also controls sodium channel availability, synaptic integration, and neuronal firing. Here we show by analysis of sodium channel mutants that neuromodulation via PKA and PKC enhances intrinsic slow inactivation of sodium channels, making them unavailable for activation. Mutations in the S6 segment in domain III (N1466A,D) either enhance or block slow inactivation, implicating S6 segments in the molecular pathway for slow inactivation. Modulation of N1466A channels by PKC or PKA is increased, whereas modulation of N1466D is nearly completely blocked. These results demonstrate that neuromodulation by PKA and PKC is caused by their enhancement of intrinsic slow inactivation gating. Modulation of slow inactivation by neurotransmitters acting through G protein-coupled receptors, PKA, and PKC is a flexible mechanism of cellular plasticity controlling the firing behavior of central neurons.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteína Quinase C/fisiologia , Canais de Sódio/fisiologia , Sequência de Aminoácidos , Asparagina/genética , Ácido Aspártico/genética , Linhagem Celular , Proteína Quinase Tipo II Dependente de AMP Cíclico , Diglicerídeos/farmacologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Modelos Biológicos , Biologia Molecular/métodos , Mutagênese/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.2 , Nucleotídeos Cíclicos/farmacologia , Técnicas de Patch-Clamp/métodos , Estrutura Terciária de Proteína/genética , Tempo de Reação/fisiologia , Tempo de Reação/efeitos da radiação , Transfecção/métodos
12.
Nat Neurosci ; 9(9): 1142-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16921370

RESUMO

Voltage-gated sodium channels (Na(V)) are critical for initiation of action potentials. Heterozygous loss-of-function mutations in Na(V)1.1 channels cause severe myoclonic epilepsy in infancy (SMEI). Homozygous null Scn1a-/- mice developed ataxia and died on postnatal day (P) 15 but could be sustained to P17.5 with manual feeding. Heterozygous Scn1a+/- mice had spontaneous seizures and sporadic deaths beginning after P21, with a notable dependence on genetic background. Loss of Na(V)1.1 did not change voltage-dependent activation or inactivation of sodium channels in hippocampal neurons. The sodium current density was, however, substantially reduced in inhibitory interneurons of Scn1a+/- and Scn1a-/- mice but not in their excitatory pyramidal neurons. An immunocytochemical survey also showed a specific upregulation of Na(V)1.3 channels in a subset of hippocampal interneurons. Our results indicate that reduced sodium currents in GABAergic inhibitory interneurons in Scn1a+/- heterozygotes may cause the hyperexcitability that leads to epilepsy in patients with SMEI.


Assuntos
Potenciais de Ação/fisiologia , Epilepsias Mioclônicas/fisiopatologia , Interneurônios/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Canais de Sódio/fisiologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Eletroencefalografia , Epilepsias Mioclônicas/genética , Genótipo , Humanos , Immunoblotting , Lactente , Interneurônios/citologia , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Convulsões/genética , Convulsões/mortalidade , Convulsões/fisiopatologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Taxa de Sobrevida , Ácido gama-Aminobutírico/metabolismo
13.
Neurobiol Dis ; 35(1): 91-102, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19409490

RESUMO

Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of seizure disorders including Generalized Epilepsy with Febrile Seizures Plus (GEFS+) and Severe Myoclonic Epilepsy of Infancy (SMEI). To determine the effects of SCN1A mutations on channel function in vivo, we generated a bacterial artificial chromosome (BAC) transgenic mouse model that expresses the human SCN1A GEFS+ mutation, R1648H. Mice with the R1648H mutation exhibit a more severe response to the proconvulsant kainic acid compared with mice expressing a control Scn1a transgene. Electrophysiological analysis of dissociated neurons from mice with the R1648H mutation reveal delayed recovery from inactivation and increased use-dependent inactivation only in inhibitory bipolar neurons, as well as a hyperpolarizing shift in the voltage dependence of inactivation only in excitatory pyramidal neurons. These results demonstrate that the effects of SCN1A mutations are cell type-dependent and that the R1648H mutation specifically leads to a reduction in interneuron excitability.


Assuntos
Cromossomos Artificiais Bacterianos/fisiologia , Modelos Animais de Doenças , Epilepsia Generalizada/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Convulsões Febris/genética , Canais de Sódio/genética , Animais , Animais Recém-Nascidos , Arginina/genética , Fenômenos Biofísicos , Células Cultivadas , Relação Dose-Resposta a Droga , Eletroencefalografia/métodos , Eletromiografia/métodos , Epilepsia Generalizada/induzido quimicamente , Epilepsia Generalizada/complicações , Epilepsia Generalizada/patologia , Histidina/genética , Ácido Caínico , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1 , Neurônios/fisiologia , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Convulsões Febris/induzido quimicamente , Convulsões Febris/complicações , Convulsões Febris/patologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
14.
Reprod Biol Endocrinol ; 7: 104, 2009 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-19781091

RESUMO

We previously demonstrated that the androgenic and anti-androgenic effects of endocrine disruptors (EDs) alter reproductive function and exert distinct effects on developing male reproductive organs. To further investigate these effects, we used an immature rat model to examine the effects of di-(2 ethylhexyl) phthalate (DEHP) and flutamide (Flu) on the male reproductive system. Immature male SD rats were treated daily with DEHP and Flu on postnatal days (PNDs) 21 to 35, in a dose-dependent manner. As results, the weights of the testes, prostate, and seminal vesicle and anogenital distances (AGD) decreased significantly in response to high doses of DEHP or Flu. Testosterone (T) levels significantly decreased in all DEHP- treated groups, whereas luteinizing hormone (LH) plasma levels were not altered by any of the two treatments at PND 36. However, treatment with DEHP or Flu induced histopathological changes in the testes, wherein degeneration and disorders of Leydig cells, germ cells and dilatation of tubular lumen were observed in a dose-dependent manner. Conversely, hyperplasia and denseness of Leydig, Sertoli and germ cells were observed in rats given with high doses of Flu. The results by cDNA microarray analysis indicated that 1,272 genes were up-regulated by more than two-fold, and 1,969 genes were down-regulated in response to DEHP, Flu or both EDs. These genes were selected based on their markedly increased or decreased expression levels. These genes have been also classified on the basis of gene ontology (e.g., steroid hormone biosynthetic process, regulation of transcription, signal transduction, metabolic process, biosynthetic process...). Significant decreases in gene expression were observed in steroidogenic genes (i.e., Star, Cyp11a1 and Hsd3b). In addition, the expression of a common set of target genes, including CaBP1, Vav2, Plcd1, Lhx1 and Isoc1, was altered following exposure to EDs, suggesting that they may be marker genes to screen for the anti-androgenic or androgenic effects of EDs. Overall, our results demonstrated that exposure to DEHP, Flu or both EDs resulted in a alteration of gene expression in the testes of immature male rats. Furthermore, the toxicological effects of these EDs on the male reproductive system resulted from their anti-androgenic effects. Taken together, these results provide a new insight into the molecular mechanisms underlying the detrimental impacts of EDs, in regards to anti-androgenic effects in humans and wildlife.


Assuntos
Dietilexilftalato/farmacologia , Flutamida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Testículo/efeitos dos fármacos , Antagonistas de Androgênios/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Células Germinativas/patologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Hormônio Luteinizante/sangue , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Testículo/metabolismo , Testículo/patologia , Testosterona/sangue , Fatores de Tempo
15.
Mol Cell Neurosci ; 38(4): 607-15, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18599309

RESUMO

The voltage-gated sodium channel Na(v)1.6 plays unique roles in the nervous system, but its functional properties and neuromodulation are not as well established as for Na(V)1.2 channels. We found no significant differences in voltage-dependent activation or fast inactivation between Na(V)1.6 and Na(V)1.2 channels expressed in non-excitable cells. In contrast, the voltage dependence of slow inactivation was more positive for Na(v)1.6 channels, they conducted substantially larger persistent sodium currents than Na(v)1.2 channels, and they were much less sensitive to inhibition by phosphorylation by cAMP-dependent protein kinase and protein kinase C. Resurgent sodium current, a hallmark of Na(v)1.6 channels in neurons, was not observed for Na(V)1.6 expressed alone or with the auxiliary beta(4) subunit. The unique properties of Na(V)1.6 channels, together with the resurgent currents that they conduct in neurons, make these channels well-suited to provide the driving force for sustained repetitive firing, a crucial property of neurons.


Assuntos
Potenciais de Ação/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Sódio/fisiologia , Animais , Linhagem Celular , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ratos , Receptores de Neurotransmissores/fisiologia , Canais de Sódio/química , Canais de Sódio/metabolismo
16.
PLoS One ; 14(8): e0221156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31419255

RESUMO

ND7/23 cells are gaining traction as a host model to express peripheral sodium channels such as NaV1.8 and NaV1.9 that have been difficult to express in widely utilized heterologous cells, like CHO and HEK293. Use of ND7/23 as a model cell to characterize the properties of sodium channels requires clear understanding of the endogenous ion channels. To define the nature of the background sodium currents in ND7/23 cells, we aimed to comprehensively profile the voltage-gated sodium channel subunits by endpoint and quantitative reverse transcription-PCR and by whole-cell patch clamp electrophysiology. We found that untransfected ND7/23 cells express endogenous peak sodium currents that average -2.12nA (n = 15) and with kinetics typical of fast sodium currents having activation and inactivation completed within few milliseconds. Furthermore, sodium currents were reduced to virtually nil upon exposure to 100nM tetrodotoxin, indicating that ND7/23 cells have essentially null background for tetrodotoxin-resistant (TTX-R) currents. qRT-PCR profiling indicated a major expression of TTX-sensitive (TTX-S) NaV1.6 and NaV1.7 at similar levels and very low expression of TTX-R NaV1.9 transcripts. There was no expression of TTX-R NaV1.8 in ND7/23 cells. There was low expression of NaV1.1, NaV1.2, NaV1.3 and no expression of cardiac or skeletal muscle sodium channels. As for the sodium channel auxiliary subunits, ß1 and ß3 subunits were expressed, but not the ß2 and ß4 subunits that covalently associate with the α-subunits. In addition, our results also showed that only the mouse forms of NaV1.6, NaV1.7 and NaV1.9 sodium channels were expressed in ND7/23 cells that was originally generated as a hybridoma of rat embryonic DRG and mouse neuroblastoma cell-line. By molecular profiling of auxiliary ß- and principal α-subunits of the voltage gated sodium channel complex, our results define the background sodium channels expressed in ND7/23 cells, and confirm their utility for detailed functional studies of emerging pain channelopathies ascribed to mutations of the TTX-R sodium channels of sensory neurons.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Sódio/metabolismo , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Perfilação da Expressão Gênica , Hibridomas/efeitos dos fármacos , Hibridomas/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Técnicas de Patch-Clamp , Ratos , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
17.
J Neurosci ; 27(41): 11065-74, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17928448

RESUMO

Loss-of-function mutations of Na(V)1.1 channels cause severe myoclonic epilepsy in infancy (SMEI), which is accompanied by severe ataxia that contributes substantially to functional impairment and premature deaths. Mutant mice lacking Na(V)1.1 channels provide a genetic model for SMEI, exhibiting severe seizures and premature death on postnatal day 15. Behavioral assessment indicated severe motor deficits in mutant mice, including irregularity of stride length during locomotion, impaired motor reflexes in grasping, and mild tremor in limbs when immobile, consistent with cerebellar dysfunction. Immunohistochemical studies showed that Na(V)1.1 and Na(V)1.6 channels are the primary sodium channel isoforms expressed in cerebellar Purkinje neurons. The amplitudes of whole-cell peak, persistent, and resurgent sodium currents in Purkinje neurons were reduced by 58-69%, without detectable changes in the kinetics or voltage dependence of channel activation or inactivation. Nonlinear loss of sodium current in Purkinje neurons from heterozygous and homozygous mutant animals suggested partial compensatory upregulation of Na(V)1.6 channel activity. Current-clamp recordings revealed that the firing rates of Purkinje neurons from mutant mice were substantially reduced, with no effect on threshold for action potential generation. Our results show that Na(V)1.1 channels play a crucial role in the excitability of cerebellar Purkinje neurons, with major contributions to peak, persistent, and resurgent forms of sodium current and to sustained action potential firing. Loss of these channels in Purkinje neurons of mutant mice and SMEI patients may be sufficient to cause their ataxia and related functional deficits.


Assuntos
Ataxia/genética , Ataxia/fisiopatologia , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Células de Purkinje/fisiologia , Canais de Sódio/fisiologia , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Camundongos , Camundongos Mutantes Neurológicos , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas do Tecido Nervoso/genética , Células de Purkinje/citologia , Canais de Sódio/genética
18.
Toxicon ; 49(2): 124-41, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17239913

RESUMO

Voltage-gated sodium, calcium, and potassium channels generate electrical signals required for action potential generation and conduction and are the molecular targets for a broad range of potent neurotoxins. These channels are built on a common structural motif containing six transmembrane segments and a pore loop. Their pores are formed by the S5/S6 segments and the pore loop between them, and they are gated by bending of the S6 segments at a hinge glycine or proline residue. The voltage sensor domain consists of the S1-S4 segments, with positively charged residues in the S4 segment serving as gating charges. The diversity of toxin action on these channels is illustrated by sodium channels, which are the molecular targets for toxins that act at six or more distinct receptor sites on the channel protein. Both hydrophilic low molecular weight toxins and larger polypeptide toxins physically block the pore and prevent sodium conductance. Hydrophobic alkaloid toxins and related lipid-soluble toxins act at intramembrane sites and alter voltage-dependent gating of sodium channels via an allosteric mechanism. In contrast, polypeptide toxins alter channel gating by voltage-sensor trapping through binding to extracellular receptor sites, and this toxin interaction has now been modeled at the atomic level for a beta-scorpion toxin. The voltage-sensor trapping mechanism may be a common mode of action for polypeptide gating modifier toxins acting on all of the voltage-gated ion channels.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/efeitos dos fármacos , Neurotoxinas/farmacologia , Peçonhas/farmacologia , Animais , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia
19.
Acta Biomater ; 61: 134-143, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28764948

RESUMO

Cementum formation on the exposed tooth-root surface is a critical process in periodontal regeneration. Although various therapeutic approaches have been developed, regeneration of integrated and functional periodontal complexes is still wanting. Here, we found that the OCCM30 cementoblasts cultured on fibrin matrix express substantial levels of matrix proteinases, leading to the degradation of fibrin and the apoptosis of OCCM30 cells, which was reversed upon treatment with a proteinase inhibitor, ε-aminocaproic acid (ACA). Based on these findings, ACA-releasing chitosan particles (ACP) were fabricated and ACP-incorporated fibrin (fibrin-ACP) promoted the differentiation of cementoblasts in vitro, as confirmed by bio-mineralization and expressions of molecules associated with mineralization. In a periodontal defect model of beagle dogs, fibrin-ACP resulted in substantial cementum formation on the exposed root dentin in vivo, compared to fibrin-only and enamel matrix derivative (EMD) which is used clinically for periodontal regeneration. Remarkably, the fibrin-ACP developed structural integrations of the cementum-periodontal ligament-bone complex by the Sharpey's fiber insertion. In addition, fibrin-ACP promoted alveolar bone regeneration through increased bone volume of tooth roof-of-furcation defects and root coverage. Therefore, fibrin-ACP can promote cementogenesis and osteogenesis by controlling biodegradability of fibrin, implicating the feasibility of its therapeutic use to improve periodontal regeneration. STATEMENT OF SIGNIFICANCE: Cementum, the mineralized layer on root dentin surfaces, functions to anchor fibrous connective tissues on tooth-root surfaces with the collagenous Sharpey's fibers integration, of which are essential for periodontal functioning restoration in the complex. Through the cementum-responsible fiber insertions on tooth-root surfaces, PDLs transmit various mechanical responses to periodontal complexes against masticatory/occlusal stimulations to support teeth. In this study, periodontal tissue regeneration was enhanced by use of modified fibrin biomaterial which significantly promoted cementogenesis within the periodontal complex with structural integration by collagenous Sharpey's fiber insertions in vivo by controlling fibrin degradation and consequent cementoblast apoptosis. Furthermore, the modified fibrin could improve repair and regeneration of tooth roof-of-furcation defects, which has spatial curvatures and geometrical difficulties and hardly regenerates periodontal tissues.


Assuntos
Ácido Aminocaproico/química , Diferenciação Celular/efeitos dos fármacos , Quitosana/química , Cemento Dentário/citologia , Fibrina/farmacologia , Regeneração , Animais , Apoptose/efeitos dos fármacos , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cementogênese/efeitos dos fármacos , Cemento Dentário/diagnóstico por imagem , Cemento Dentário/efeitos dos fármacos , Cães , Masculino , Camundongos , Nanopartículas/química , Periodonto/diagnóstico por imagem , Periodonto/efeitos dos fármacos , Periodonto/fisiologia , Ratos , Regeneração/efeitos dos fármacos , Microtomografia por Raio-X
20.
J Neurosci ; 25(13): 3341-9, 2005 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15800189

RESUMO

Voltage-gated sodium channels are responsible for the upstroke of the action potential in most excitable cells, and their fast inactivation is essential for controlling electrical signaling. In addition, a noninactivating, persistent component of sodium current, I(NaP), has been implicated in integrative functions of neurons including threshold for firing, neuronal bursting, and signal integration. G-protein betagamma subunits increase I(NaP), but the sodium channel subtypes that conduct I(NaP) and the target site(s) on the sodium channel molecule required for modulation by Gbetagamma are poorly defined. Here, we show that I(NaP) conducted by Na(v)1.1 and Na(v)1.2 channels (Na(v)1.1 > Na(v)1.2) is modulated by Gbetagamma; Na(v)1.4 and Na(v)1.5 channels produce smaller I(NaP) that is not regulated by Gbetagamma. These qualitative differences in modulation by Gbetagamma are determined by the transmembrane body of the sodium channels rather than their cytoplasmic C-terminal domains, which have been implicated previously in modulation by Gbetagamma. However, the C-terminal domains determine the quantitative extent of modulation of Na(v)1.2 channels by Gbetagamma. Studies of chimeric and truncated Na(v)1.2 channels identify molecular determinants that affect modulation of I(NaP) located between amino acid residue 1890 and the C terminus at residue 2005. The last 28 amino acid residues of the C terminus are sufficient to support modulation by Gbetagamma when attached to the proximal C-terminal domain. Our results further define the sodium channel subtypes that generate I(NaP) and identify crucial molecular determinants in the C-terminal domain required for modulation by Gbetagamma when attached to the transmembrane body of a responsive sodium channel.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Canais de Sódio/fisiologia , Sequência de Aminoácidos , Linhagem Celular , Condutividade Elétrica , Estimulação Elétrica/métodos , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Ativação do Canal Iônico/efeitos da radiação , Potenciais da Membrana/fisiologia , Biologia Molecular/métodos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutagênese/fisiologia , Mutação/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.2 , Canal de Sódio Disparado por Voltagem NAV1.5 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp/métodos , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa