Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 20(14): 2831-2842, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35294516

RESUMO

Trifluoromethylation reaction is one of the significant and practical organic chemical reactions, and the design and discovery of novel trifluoromethylation reagents have been attracting more and more attention. Trifluoromethyl-substituted organic hydride compounds (XH) have the potential to be novel trifluoromethylation reagents in organic synthesis due to the favorable tendency of XH˙+ releasing ˙CF3 to form stable aromatic structures in terms of thermodynamics. The key elementary step of the trifluoromethylation is the radical cation (XH˙+) generation by catalysis or single-electron activation releasing ˙CF3 to form a stable aromatic structure, which also provides the thermodynamic driving force of the chemical process. In this work, 47 new trifluoromethylation reagent candidates of XHs were designed and calculated for the Gibbs free energy and activation free energy [ΔG‡RD(XH˙+)] of XH˙+ releasing ˙CF3 using the density functional theory (DFT) method, in order to quantitatively measure the reactivity of XHs as trifluoromethylation reagents, and to establish the molecular library as well as reactivity database of novel trifluoromethylation reagents for synthetic chemists. According to the and ΔG‡RD(XH˙+) values, all the XHs can be reasonably divided into 3 classes, including class 1 (excellent trifluoromethylation reagents), class 2 (potential trifluoromethylation reagents) and class 3 (not trifluoromethylation reagents). To our delight, 15 XHs with a 1,4-dihydropyridine structure and 3 XHs with a 3,4-dihydropyrimidin-2-one structure are identified to be novel excellent and potential trifluoromethylation reagents, respectively, according to their reactivity data. The relationship between the structural features, including methylation, heteroatom, substituents, conjugated structure and so on, and the reactivity of XHs as trifluoromethylation reagents are also discussed in this work. The computation results indicate that trifluoromethyl-substituted 1,4-dihydropyridine compounds and 3,4-dihydropyrimidin-2-one analogues could be possible trifluoromethylation reagents in organic synthesis. This work may provide the theoretical basis and references for discovering organic hydride compounds as novel reagents for trifluoromethylation or other alkylation reactions.


Assuntos
Modelos Teóricos , Compostos Orgânicos , Catálise , Indicadores e Reagentes , Estrutura Molecular
2.
Materials (Basel) ; 15(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35407972

RESUMO

With recent increases in environmental awareness, the circular economy concept, which involves turning waste into usable products, has gradually become widely accepted. Spent mushroom substrate (SMS) is an agricultural waste that lacks recycling channels in Taiwan. This study explored the feasibility of simultaneously recycling two completely different types of waste: spent mushroom substrate (SMS), an agricultural waste, and electric-arc furnace dust (EAFD), an industrial waste. Specifically, SMS was used to replace metallurgical coke as a reducing agent for EAFD, which underwent carbothermic reduction to recycle valuable metallic Zn. The results showed that if SMS and EAFD were mixed at a C/O ratio of 0.8, the degree of Zn removal achieved 95% at 1100 °C, which is 150 °C lower than the reduction temperature of the EAFD-coke mixture (due to volatile matter (VM) in SMS). For the reduction of ZnO in EAFD, with the assistance of VM in SMS, the C/O ratio can be decreased from 0.8 to 0.16 at 1300 °C, achieving a high degree of Zn removal over 95%. In addition, the torrefaction of SMS increased the fixed carbon content and improved the Zn productivity at the same C/O ratio, reaching almost the same productivity as the coke sample (SMS torrefaction = 500 °C, C/O = 0.8, reduction = 1200 °C, Zn removal~99%). Finally, CO2 emission reductions from the use of SMS were also estimated.

3.
RSC Adv ; 10(52): 31425-31434, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35520635

RESUMO

Recently, a variety of 4-substituted Hantzsch esters (XRH) with different structures have been widely researched as alkylation reagents in chemical reactions, and the key step of the chemical process is the elementary step of XRH˙+ releasing R˙. The purpose of this work is to investigate the essential factors which determine whether or not an XRH is a great alkylation reagent using density functional theory (DFT). This study shows that the ability of an XRH acting as an alkylation reagent can be reasonably estimated by its ΔG ≠ RD(XRH˙+) value, which can be conveniently obtained through DFT computations. Moreover, the data also show that ΔG ≠ RD(XRH˙+) has no simple correlation with the structural features of XRH, including the electronegativity of the R substituent group and the magnitude of steric resistance; therefore, it is difficult to judge whether an XRH can provide R˙ solely by experience. Thus, these results are helpful for chemists to design 4-substituted Hantzsch esters (XRH) with novel structures and to guide the application of XRH as a free radical precursor in organic synthesis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa