Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Pharmacol Exp Ther ; 369(2): 223-233, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30804001

RESUMO

We leveraged a clinical pharmacokinetic (PK)/pharmacodynamics (PD)/efficacy relationship established with an oral phosphatidylinositol 3-kinase (PI3K)δ inhibitor (Idelalisib) in a nasal allergen challenge study to determine whether a comparable PK/PD/efficacy relationship with PI3Kδ inhibitors was observed in preclinical respiratory models of type 2 T helper cell (TH2) and type 1 T helper cell (TH1) inflammation. Results from an in vitro rat blood basophil (CD63) activation assay were used as a PD biomarker. IC50 values for PI3Kδ inhibitors, MSD-496486311, MSD-126796721, Idelalisib, and Duvelisib, were 1.2, 4.8, 0.8, and 0.5 µM. In the ovalbumin Brown Norway TH2 pulmonary inflammation model, all PI3Kδ inhibitors produced a dose-dependent inhibition of bronchoalveolar lavage eosinophils (maximum effect between 80% and 99%). In a follow-up experiment designed to investigate PK attributes [maximum (or peak) plasma concentration (Cmax), area under the curve (AUC), time on target (ToT)] that govern PI3Kδ efficacy, MSD-496486311 [3 mg/kg every day (QD) and 100 mg/kg QD] produced 16% and 93% inhibition of eosinophils, whereas doses (20 mg/kg QD, 10 mg/kg twice per day, and 3 mg/kg three times per day) produced 54% to 66% inhibition. Our profiling suggests that impact of PI3Kδ inhibitors on eosinophils is supported by a PK target with a ToT over the course of treatment close to the PD IC50 rather than strictly driven by AUC, Cmax, or Cmin (minimum blood plasma concentration) coverage. Additional studies in an Altenaria alternata rat model, a sheep Ascaris-sensitive sheep model, and a TH1-driven rat ozone exposure model did not challenge our hypothesis, suggesting that an IC50 level of TE (target engagement) sustained for 24 hours is required to produce efficacy in these traditional models. We conclude that the PK/PD observations in our animal models appear to align with clinical results associated with a TH2 airway disease.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinética , Doenças Respiratórias/tratamento farmacológico , Doenças Respiratórias/imunologia , Células Th1/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Ratos , Doenças Respiratórias/metabolismo
2.
Reproduction ; 157(1): 1-12, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30390614

RESUMO

The development of the mammalian phallus involves hormone-dependent mesenchymal-epithelial signalling mechanisms that contribute to urethral closure and regulation of phallus elongation and growth. In marsupials, most differentiation and growth of the phallus occurs post-natally, making them amenable to direct hormone treatment. Expression of IGFs, FGFs, EFNB2, MAFB, DLX5 and AP-1 mRNAs in the phallus at day 50 post-partum (pp) were altered after treatment of tammar wallaby young from day 20 to 40 pp with androgen, oestrogen or after castration at day 25 pp. However, the most interesting changes occurred in the IGF pathway genes. Androgen treatment upregulated IGF1 in female phalluses and oestrogen treatment upregulated IGF1 in male phalluses, but it was downregulated by castration. IGFBP3 was higher in female phalluses and downregulated by androgen. IGF1 expression was higher in all untreated male than in female phalluses from day 50 to 150 pp, but IGFBP3 had the reverse pattern. At day 90 pp, when urethral closure in males is progressing and male phallus growth is accelerating. IGF1 and PCNA protein were only detected in the male urorectal septum, suggesting for the first time that closure and elongation may involve IGF1 activation of cell proliferation specifically in male phalluses. These effects of sex steroids on gene expression and on the IGF1 signalling pathway in particular, suggest that the developing phallus may be especially susceptible to perturbation by exogenous hormones.


Assuntos
Androgênios/farmacologia , Estrogênios/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Macropodidae , Pênis/efeitos dos fármacos , Diferenciação Sexual/efeitos dos fármacos , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genitália Masculina/efeitos dos fármacos , Genitália Masculina/crescimento & desenvolvimento , Macropodidae/crescimento & desenvolvimento , Masculino , Pênis/crescimento & desenvolvimento , Escroto/efeitos dos fármacos , Escroto/crescimento & desenvolvimento , Diferenciação Sexual/genética , Transdução de Sinais/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento
3.
Biol Reprod ; 99(4): 806-816, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29767687

RESUMO

Environmental endocrine disruptors (EEDs) that affect androgen or estrogen activity may disrupt gene regulation during phallus development to cause hypospadias or a masculinized clitoris. We treated developing male tammar wallabies with estrogen and females with androgen from day 20-40 postpartum (pp) during the androgen imprinting window of sensitivity. Estrogen inhibited phallus elongation but had no effect on urethral closure and did not significantly depress testicular androgen synthesis. Androgen treatment in females did not promote phallus elongation but initiated urethral closure. Phalluses were collected for transcriptome sequencing at day 50 pp when they first become sexually dimorphic to examine changes in two signaling pathways, sonic hedgehog (SHH) and wingless-type MMTV integration site family (WNT)/ß-catenin. SHH mRNA and ß-catenin were predominantly expressed in the urethral epithelium in the tammar phallus, as in eutherian mammals. Estrogen treatment and castration of males induced an upregulation of SHH, while androgen treatment downregulated SHH. These effects appear to be direct since we detected putative estrogen receptor α (ERα) and androgen receptor (AR) binding sites near SHH. WNT5A, like SHH, was downregulated by androgen, while WNT4 was upregulated in female phalluses after androgen treatment. After estrogen treatment, WIF1 and WNT7A were both downregulated in male phalluses. After castration, WNT9A was upregulated. These results suggest that SHH and WNT pathways are regulated by both estrogen and androgen to direct the proliferation and elongation of the phallus during differentiation. Their response to exogenous hormones makes these genes potential targets of EEDs in the etiology of abnormal phallus development including hypospadias.


Assuntos
Macropodidae/crescimento & desenvolvimento , Macropodidae/genética , Pênis/crescimento & desenvolvimento , Pênis/metabolismo , Transdução de Sinais/genética , Uretra/crescimento & desenvolvimento , Uretra/metabolismo , Androgênios/metabolismo , Animais , Disruptores Endócrinos/toxicidade , Estrogênios/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genitália Feminina/efeitos dos fármacos , Genitália Feminina/crescimento & desenvolvimento , Genitália Feminina/metabolismo , Genitália Masculina/efeitos dos fármacos , Genitália Masculina/crescimento & desenvolvimento , Genitália Masculina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Macropodidae/metabolismo , Masculino , Pênis/efeitos dos fármacos , Diferenciação Sexual/efeitos dos fármacos , Diferenciação Sexual/genética , Diferenciação Sexual/fisiologia , Transdução de Sinais/efeitos dos fármacos , Uretra/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
4.
Biol Reprod ; 97(2): 217-229, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29044428

RESUMO

The first sign of mammalian germ cell sexual differentiation is the initiation of meiosis in females and of mitotic arrest in males. In the mouse, retinoic acid induces ovarian Stra8 expression and entry of germ cells into meiosis. In developing mouse testes, cytochrome P450 family 26, subfamily b, polypeptide 1 (CYP26B1) produced by the Sertoli cells degrades retinoic acid, preventing Stimulated by Retinoic Acid Gene 8 (Stra8), expression and inhibiting meiosis. However, in developing humans, there is no evidence that CYP26B1 acts a meiosis-inhibiting factor. We therefore examined aspects of the retinoic acid/STRA8/CYP26B1 pathway during gonadal development in the tammar wallaby, a marsupial, to understand whether retinoic acid stimulation of STRA8 and CYP26B1 degradation of retinoic acid was conserved between widely divergent mammals. In tammar ovaries, as in human ovaries and unlike the pattern in mice, CYP26B1 expression was not downregulated before the onset of meiosis. Exposure of pre-meiotic tammar ovaries to exogenous retinoic acid in vitro upregulated STRA8 expression compared to controls. We conclude that retinoic acid and STRA8 are conserved factors that control the initiation of meiosis amongst mammals but the role of CYP26B1 as a meiosis-inhibiting factor may be specific to rodents. The identity of the marsupial meiosis-inhibiting factor remains unknown.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Macropodidae/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Processos de Determinação Sexual/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Meiose , Camundongos , Oogênese/fisiologia , Ácido Retinoico 4 Hidroxilase/genética , Especificidade da Espécie , Espermatogênese/fisiologia , Tretinoína/metabolismo
5.
Dev Dyn ; 243(2): 324-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24115631

RESUMO

BACKGROUND: At birth, marsupial neonates have precociously developed forelimbs. The development of the tammar wallaby (Macropus eugenii) hindlimbs lags significantly behind that of the forelimbs. This differs from the grey short-tailed opossum, Monodelphis domestica, which has relatively similar fore- and hindlimbs at birth. This study examines the expression of the key patterning genes TBX4, TBX5, PITX1, FGF8, and SHH in developing limb buds in the tammar wallaby. RESULTS: All genes examined were highly conserved with orthologues from opossum and mouse. TBX4 expression appeared earlier in development than in the mouse, but later than in the opossum. SHH expression is restricted to the zone of polarising activity, while TBX5 (forelimb) and PITX1 (hindlimb) showed diffuse mRNA expression. FGF8 is specifically localised to the apical ectodermal ridge, which is more prominent than in the opossum. CONCLUSIONS: The most marked divergence in limb size in marsupials occurs in the kangaroos and wallabies. The faster development of the fore limb compared to that of the hind limb correlates with the early timing of the expression of the key patterning genes in these limbs.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Botões de Extremidades/crescimento & desenvolvimento , Botões de Extremidades/metabolismo , Macropodidae/crescimento & desenvolvimento , Fatores Etários , Animais , Primers do DNA/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Técnicas Histológicas , Hibridização In Situ , Botões de Extremidades/ultraestrutura , Macropodidae/metabolismo , Microscopia Eletrônica de Varredura , Especificidade da Espécie , Proteínas com Domínio T/metabolismo
6.
J Nematol ; 47(2): 126-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26170474

RESUMO

To understand the efficacy of emamectin benzoate, avermectin, milbemectin, and thiacloprid on the reproduction and development of Bursaphelenchus xylophilus, seven parameters, namely population growth, fecundity, egg hatchability, larval lethality, percent larval development, body size, and sexual ratio, were investigated using sublethal (LC20) doses of these compounds in the laboratory. Emamectin benzoate treatment led to a significant suppression in population size, brood size, and percent larval development with 411, 3.50, and 49.63%, respectively, compared to 20850, 24.33, and 61.43% for the negative control. The embryonic and larval lethality increased obviously from 12.47% and 13.70% to 51.37% and 75.30%, respectively. In addition, the body length was also significantly reduced for both males and females in the emamectin benzoate treatment. Avermectin and milbemectin were also effective in suppressing population growth by increasing larval lethality and reducing larval development, although they did not affect either brood size or embryonic lethality. Body length for both male and female worms was increased by avermectin. Thiacloprid caused no adverse reproductive effects, although it suppressed larval development. Sexual ratio was not affected by any of these four nematicides. Our results indicate that emamectin benzoate, milbemectin, and avermectin are effective against the reproduction of B. xylophilus. We think these three nematicides can be useful for the control of pine wilt disease.

7.
Reproduction ; 147(3): 279-89, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24307230

RESUMO

The X-linked aristaless gene, ARX, is essential for the development of the gonads, forebrain, olfactory bulb, pancreas, and skeletal muscle in mice and humans. Mutations cause neurological diseases, often accompanied by ambiguous genitalia. There are a disproportionately high number of testis and brain genes on the human and mouse X chromosomes. It is still unknown whether the X chromosome accrued these genes during its evolution or whether genes that find themselves on the X chromosome evolve such roles. ARX was originally autosomal in mammals and remains so in marsupials, whereas in eutherian mammals it translocated to the X chromosome. In this study, we examined autosomal ARX in tammars and compared it with the X-linked Arx in mice. We detected ARX mRNA in the neural cells of the forebrain, midbrain and hindbrain, and olfactory bulbs in developing tammars, consistent with the expression in mice. ARX was detected by RT-PCR and mRNA in situ hybridization in the developing tammar wallaby gonads of both sexes, suggestive of a role in sexual development as in mice. We also detected ARX/Arx mRNA in the adult testis in both tammars and mice, suggesting a potential novel role for ARX/Arx in spermiogenesis. ARX transcripts were predominantly observed in round spermatids. Arx mRNA localization distributions in the mouse adult testis suggest that it escaped meiotic sex chromosome inactivation during spermatogenesis. Our findings suggest that ARX in the therian mammal ancestor already played a role in male reproduction before it was recruited to the X chromosome in eutherians.


Assuntos
Células Germinativas/metabolismo , Proteínas de Homeodomínio/genética , Marsupiais/genética , Camundongos/genética , Espermatogênese/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Macropodidae/genética , Macropodidae/metabolismo , Masculino , Marsupiais/crescimento & desenvolvimento , Marsupiais/metabolismo , Camundongos/crescimento & desenvolvimento , Camundongos/metabolismo , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Maturidade Sexual/genética , Espermatogônias/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X
8.
Gene ; 895: 148006, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979950

RESUMO

The pine-wood invasive species nematode Bursaphelenchus xylophilus causes great forestry damage globally, particularly in Eurasia. B. xylophilus can hybridize with its native sibling, Bursaphelenchus mucronatus, with whom it shares an interestingly asymmetric mating behavior. However, the molecular mechanism underlying interspecific asymmetric mating has yet to be clarified. ntr-1, a nematocin receptor gene, is involved in an oxytocin/vasopressin-like signaling system that can regulate reproduction. Structural analysis using bioinformatics revealed that both Bxy- and Bmu-ntr-1 encode 7TM-GPCR, a conserved sequence. In situ hybridization and qPCR showed that both Bxy- and Bmu-ntr-1 were highly expressed in adult nematodes. Specifically, Bxy-ntr-1 was expressed in the vulva of females and caudal gonad of males, whereas Bmu-ntr-1 was expressed in the postal vulva and uterus of females and the whole gonads of males. Furthermore, RNAi of ntr-1 further demonstrated the biological function of interspecific mating: ntr-1 can regulate mating behavior, lead to male-female specificity, and ultimately result in interspecific differences. In B. mucronatus, ntr-1 influenced male mating more than female mating success, while downregulation of ntr-1 in B. xylophilus resulted in a significant decline in the female mating rate. Competitive tests revealed that the mating rate of the cross significantly declined after downregulation of Bxy♀- and Bmu♂-ntr-1, but no obvious change occurred in the reciprocal cross. Thus, we speculate that ntr-1 may be the key factor behind interspecific asymmetric mating. The current study (1) demonstrated the regulatory function of ntr-1 on mating behavior and (2) theoretically revealed the molecular basis of interspecific asymmetric mating.


Assuntos
Nematoides , Pinus , Tylenchida , Animais , Feminino , Masculino , Humanos , Xylophilus , Irmãos , Nematoides/genética , Reprodução , Espécies Introduzidas , Tylenchida/genética
9.
Am J Respir Cell Mol Biol ; 49(6): 1085-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23889698

RESUMO

Spleen tyrosine kinase (SYK) is a key activator of signaling pathways downstream of multiple surface receptors implicated in asthma. SYK function has been extensively studied in mast cells downstream of the high-affinity IgE receptor, FcεR1. Preclinical studies have demonstrated a role for SYK in models of allergic inflammation, but a role in airway constriction has not been demonstrated. Here, we have used a potent and selective pharmacological inhibitor of SYK to determine the role of SYK in allergen-mediated inflammation and airway constriction in preclinical models. Attenuation of allergic airway responses was evaluated in a rat passive anaphylaxis model and rat and sheep inhaled allergen challenge models, as well as an ex vivo model of allergen-mediated airway constriction in rats and cynomolgus monkeys. Pharmacological inhibition of SYK dose-dependently blocked IgE-mediated tracheal plasma extravasation in rats. In a rat ovalbumin-sensitized airway challenge model, oral dosing with an SYK inhibitor led to a dose-dependent reduction in lung inflammatory cells. Ex vivo analysis of allergen-induced airway constriction in ovalbumin-sensitized brown Norway rats showed a complete attenuation with treatment of a SYK inhibitor, as well as a complete block of allergen-induced serotonin release. Similarly, allergen-mediated airway constriction was attenuated in ex vivo studies from nonhuman primate lungs. Intravenous administration of an SYK inhibitor attenuated both early- and late-phase allergen-induced increases in airway resistance in an Ascaris-sensitive sheep allergen challenge model. These data support a key role for SYK signaling in mediating allergic airway responses.


Assuntos
Alérgenos/administração & dosagem , Asma/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Ascaris suum/imunologia , Asma/etiologia , Asma/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/imunologia , Broncoconstrição/fisiologia , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Macaca fascicularis , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Ovalbumina/imunologia , Proteínas Tirosina Quinases/fisiologia , Ratos , Ratos Endogâmicos BN , Ratos Sprague-Dawley , Ovinos , Transdução de Sinais/efeitos dos fármacos , Quinase Syk
10.
Sci Rep ; 13(1): 10742, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400535

RESUMO

Constructing an efficient and accurate epilepsy detection system is an urgent research task. In this paper, we developed an EEG-based multi-frequency multilayer brain network (MMBN) and an attentional mechanism based convolutional neural network (AM-CNN) model to study epilepsy detection. Specifically, based on the multi-frequency characteristics of the brain, we first use wavelet packet decomposition and reconstruction methods to divide the original EEG signals into eight frequency bands, and then construct MMBN through correlation analysis between brain regions, where each layer corresponds to a specific frequency band. The time, frequency and channel related information of EEG signals are mapped into the multilayer network topology. On this basis, a multi-branch AM-CNN model is designed, which completely matches the multilayer structure of the proposed brain network. The experimental results on public CHB-MIT datasets show that eight frequency bands divided in this work are all helpful for epilepsy detection, and the fusion of multi-frequency information can effectively decode the epileptic brain state, achieving accurate detection of epilepsy with an average accuracy of 99.75%, sensitivity of 99.43%, and specificity of 99.83%. All of these provide reliable technical solutions for EEG-based neurological disease detection, especially for epilepsy detection.


Assuntos
Atenção , Encéfalo , Epilepsia , Redes Neurais de Computação , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Eletroencefalografia , Encéfalo/fisiopatologia , Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Adulto Jovem
11.
BMC Dev Biol ; 12: 2, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22235805

RESUMO

BACKGROUND: Kangaroos and wallabies have specialised limbs that allow for their hopping mode of locomotion. The hindlimbs differentiate much later in development but become much larger than the forelimbs. The hindlimb autopod has only four digits, the fourth of which is greatly elongated, while digits two and three are syndactylous. We investigated the expression of two genes, HOXA13 and HOXD13, that are crucial for digit patterning in mice during formation of the limbs of the tammar wallaby. RESULTS: We describe the development of the tammar limbs at key stages before birth. There was marked heterochrony and the hindlimb developed more slowly than the forelimb. Both tammar HOXA13 and HOXD13 have two exons as in humans, mice and chickens. HOXA13 had an early and distal mRNA distribution in the tammar limb bud as in the mouse, but forelimb expression preceded that in the hindlimb. HOXD13 mRNA was expressed earlier in the forelimb than the hindlimb and was predominantly detected in the interdigital tissues of the forelimb. In contrast, the hindlimb had a more restricted expression pattern that appeared to be expressed at discrete points at both posterior and anterior margins of the limb bud, and was unlike expression seen in the mouse and the chicken. CONCLUSIONS: This is the first examination of HOXA and HOXD gene expression in a marsupial. The gene structure and predicted proteins were highly conserved with their eutherian orthologues. Interestingly, despite the morphological differences in hindlimb patterning, there were no modifications to the polyalanine tract of either HOXA13 or HOXD13 when compared to those of the mouse and bat but there was a marked difference between the tammar and the other mammals in the region of the first polyserine tract of HOXD13. There were also altered expression domains for both genes in the developing tammar limbs compared to the chicken and mouse. Together these findings suggest that the timing of HOX gene expression may contribute to the heterochrony of the forelimb and hindlimb and that alteration to HOX domains may influence phenotypic differences that lead to the development of marsupial syndactylous digits.


Assuntos
Extremidades/embriologia , Proteínas de Homeodomínio/metabolismo , Macropodidae/embriologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Embrião de Mamíferos/anatomia & histologia , Desenvolvimento Embrionário , Extremidades/anatomia & histologia , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Gravidez , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase em Tempo Real
12.
BMC Genomics ; 13: 251, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22708672

RESUMO

BACKGROUND: The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. RESULTS: Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. CONCLUSIONS: This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.


Assuntos
Evolução Molecular , Genes Homeobox/genética , Macropodidae/genética , Família Multigênica/genética , RNA não Traduzido/genética , Animais , Sequência de Bases , Sequência Conservada/genética , Pegada de DNA , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , MicroRNAs/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Alinhamento de Sequência , Testículo/metabolismo
13.
Gene ; 823: 146350, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35189249

RESUMO

Bursaphelenchus xylophilus is an invasive plant-parasitic nematode causing the notorious pine wilt disease (PWD) worldwide, which results in huge economic losses. G protein-coupled receptors (GPCRs) play an essential role in mating and reproduction behavior of animals. As a unique biogenic amine in invertebrates, octopamine (OA) can regulate a variety of physiological and behavioral responses by binding specific GPCRs. These specific GPCRs are also called octopamine receptors (OARs), and octr-1 is one of them. However, Bxy-octr-1 is unknown in B. xylophilus. Therefore, we investigated the expression pattern and biological function of Bxy-octr-1. Bioinformatics analysis indicated that Bxy-octr-1 was evolutionarily conserved. The real-time quantitative PCR data revealed that Bxy-octr-1 expression was required throughout the entire life of B. xylophilus. mRNA in situ hybridization showed that Bxy-octr-1 was mainly located in the cephalopharynx, body wall muscle, intestine, and gonadal organs of B. xylophilus. RNA interference (RNAi) showed that embryo hatching rates and locomotion speeds were both dramatically decreased. Obvious abnormal phenotypes were observed in the second-stage of juveniles after RNAi treated. Furthermore, its ontogenesis was stunting. Lack of Bxy-octr-1 reduced fecundity of females, of which 31.25% of them could not successfully ovulate. In addition, the error positioning ratio of the nematode was significantly increased. Our study suggests that Bxy-octr-1 is indispensable for locomotion, early ontogenesis and mating behavior in B. xylophilus.


Assuntos
Clonagem Molecular/métodos , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Tylenchida/fisiologia , Animais , Biologia Computacional/métodos , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Hibridização in Situ Fluorescente , Masculino , Fenótipo , Interferência de RNA , Análise de Sequência de DNA , Distribuição Tecidual , Tylenchida/genética , Tylenchida/metabolismo
14.
Sci Rep ; 12(1): 14796, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042283

RESUMO

Bursaphelenchus xylophilus is a notorious invasive species, causing extensive losses to pine ecosystems globally. Previous studies had shown that the development of B. xylophilus was seriously suppressed by light. However, the mechanism involved in the inhibition is unknown. Here, it is the first report that Bxy-madd-4 is a light-regulated gene, plays a potential role in B. xylophilus in responding to the blue light. Transcriptome sequencing revealed that the expression level of Bxy-madd-4 declined by 86.39% under blue light. The reverse transcription quantitative real-time PCR results were in accord with the transcriptome sequencing, confirming the expression level of Bxy-madd-4 was suppressed by blue light. Bxy-madd-4 promoter::mCherry reporter constructed in Caenorhabditis elegans were utilized to mimic the spatiotemporal expression patterns of Bxy-madd-4. Bxy-madd-4A promoter activity had a strong continuity throughout all development stages in C. elegans. Further RNA interference indicated that only 36.8% of the Bxy-madd-4 dsRNA treated embryos were hatched. Moreover, 71.6% of the hatched nematodes were abnormal, such as particles on the body surface and concave tissues. Our findings contribute towards a better understanding of the mechanism of light against the destructive invasive nematode, providing a promising hint for control of the destructive invasive nematode.


Assuntos
Proteínas de Caenorhabditis elegans , Pinus , Rabditídios , Tylenchida , Animais , Caenorhabditis elegans , Ecossistema , Proteínas do Tecido Nervoso , Tylenchida/genética , Xylophilus
15.
Front Physiol ; 13: 1024409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467707

RESUMO

Bursaphelenchus xylophilu is a worldwide quarantine nematode, causing huge economic losses and ecological disasters in many countries. The sex ratio of B. xylophilus plays an important role in the nematode infestation. The laf-1-related genes are highly conserved in animals, playing crucial roles in sex determination. Therefore, we investigated the expression pattern and biological function of its orthologue, Bxy-laf-1 in B. xylophilus. Bxy-laf-1 has two typical conserved DNA-binding domains, DEAD and Helicase C. The real-time quantitative PCR data revealed that Bxy-laf-1 expression was required throughout the entire life of B. xylophilus, with the maximum expression in the J2 stage and the lowest expression in the adult stage. mRNA in situ hybridization showed that Bxy-laf-1 is mainly located in the cephalopharynx and reproductive organs of B. xylophilus. RNA interference (RNAi) indicated that the head swing frequency was dramatically decreased. The RNA interference results displayed that a significant reduction in motility was observed in the hatched larvae. The female to male sex ratio was also decreased in the F0 and F1 generations, but recovered in the F2 generation. The tail of female adults with eggs in the belly appeared deformities. This phenomenon appeared in the F0 and F1 generations, but recovered in the F2 generation. Bxy-laf-1 is a typical sex-determination gene with distinct expression patterns in males and females. As demonstrated in other species, the sex ratio was altered after knocking down Bxy-laf-1 expression. The results of this study contribute to our understanding of the molecular processes of Bxy-laf-1 in B. xylophilus, which may provide clues about how to control pine wilt disease by inhibiting ontogenic growth and reducing nematode fertility.

16.
Pharmaceutics ; 14(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365202

RESUMO

Janus kinase (JAK) inhibitors, such as tofacitinib (Xeljanz) and filgotinib (Jyseleca), have been approved for treatment of ulcerative colitis with several other JAK inhibitors in late-stage clinical trials for inflammatory bowel disease (IBD). Despite their impressive efficacy, the risk of adverse effects accompanying the use of JAK inhibitors has brought the entire class under scrutiny, leading to them receiving an FDA black box warning. In this study we investigated whether ileocolonic-targeted delivery of a pan-JAK inhibitor, tofacitinib, can lead to increased tissue exposure and reduced systemic exposure compared to untargeted formulations. The stability of tofacitinib in the presence of rat colonic microbiota was first confirmed. Next, in vivo computed tomography imaging was performed in rats to determine the transit time and disintegration site of ileocolonic-targeted capsules compared to gastric release capsules. Pharmacokinetic studies demonstrated that systemic drug exposure was significantly decreased, and colonic tissue exposure increased at 10 mg/kg tofacitinib dosed in ileocolonic-targeted capsules compared to gastric release capsules and an oral solution. Finally, in a rat model of LPS-induced colonic inflammation, targeted tofacitinib capsules significantly reduced concentrations of proinflammatory interleukin 6 in colonic tissue compared to a vehicle-treated control (p = 0.0408), unlike gastric release tofacitinib capsules and orally administered dexamethasone. Overall, these results support further development of ileocolonic-targeted tofacitinib, and potentially other specific JAK inhibitors in pre-clinical and clinical development, for the treatment of IBD.

17.
J Med Chem ; 65(24): 16801-16817, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36475697

RESUMO

Inhibition of leucine-rich repeat kinase 2 (LRRK2) kinase activity represents a genetically supported, chemically tractable, and potentially disease-modifying mechanism to treat Parkinson's disease. Herein, we describe the optimization of a novel series of potent, selective, central nervous system (CNS)-penetrant 1-heteroaryl-1H-indazole type I (ATP competitive) LRRK2 inhibitors. Type I ATP-competitive kinase physicochemical properties were integrated with CNS drug-like properties through a combination of structure-based drug design and parallel medicinal chemistry enabled by sp3-sp2 cross-coupling technologies. This resulted in the discovery of a unique sp3-rich spirocarbonitrile motif that imparted extraordinary potency, pharmacokinetics, and favorable CNS drug-like properties. The lead compound, 25, demonstrated exceptional on-target potency in human peripheral blood mononuclear cells, excellent off-target kinase selectivity, and good brain exposure in rat, culminating in a low projected human dose and a pre-clinical safety profile that warranted advancement toward pre-clinical candidate enabling studies.


Assuntos
Doença de Parkinson , Ratos , Humanos , Animais , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson/tratamento farmacológico , Indazóis/farmacologia , Indazóis/uso terapêutico , Leucócitos Mononucleares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Encéfalo/metabolismo , Trifosfato de Adenosina
18.
BMC Dev Biol ; 11: 58, 2011 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-21958027

RESUMO

BACKGROUND: TG-interacting factors (TGIFs) belong to a family of TALE-homeodomain proteins including TGIF1, TGIF2 and TGIFLX/Y in human. Both TGIF1 and TGIF2 act as transcription factors repressing TGF-ß signalling. Human TGIFLX and its orthologue, Tex1 in the mouse, are X-linked genes that are only expressed in the adult testis. TGIF2 arose from TGIF1 by duplication, whereas TGIFLX arose by retrotransposition to the X-chromosome. These genes have not been characterised in any non-eutherian mammals. We therefore studied the TGIF family in the tammar wallaby (a marsupial mammal) to investigate their roles in reproduction and how and when these genes may have evolved their functions and chromosomal locations. RESULTS: Both TGIF1 and TGIF2 were present in the tammar genome on autosomes but TGIFLX was absent. Tammar TGIF1 shared a similar expression pattern during embryogenesis, sexual differentiation and in adult tissues to that of TGIF1 in eutherian mammals, suggesting it has been functionally conserved. Tammar TGIF2 was ubiquitously expressed throughout early development as in the human and mouse, but in the adult, it was expressed only in the gonads and spleen, more like the expression pattern of human TGIFLX and mouse Tex1. Tammar TGIF2 mRNA was specifically detected in round and elongated spermatids. There was no mRNA detected in mature spermatozoa. TGIF2 protein was specifically located in the cytoplasm of spermatids, and in the residual body and the mid-piece of the mature sperm tail. These data suggest that tammar TGIF2 may participate in spermiogenesis, like TGIFLX does in eutherians. TGIF2 was detected for the first time in the ovary with mRNA produced in the granulosa and theca cells, suggesting it may also play a role in folliculogenesis. CONCLUSIONS: The restricted and very similar expression of tammar TGIF2 to X-linked paralogues in eutherians suggests that the evolution of TGIF1, TGIF2 and TGIFLX in eutherians was accompanied by a change from ubiquitous to tissue-specific expression. The distribution and localization of TGIF2 in tammar adult gonads suggest that there has been an ultra-conserved function for the TGIF family in fertility and that TGIF2 already functioned in spermatogenesis and potentially folliculogenesis long before its retrotransposition to the X-chromosome of eutherian mammals. These results also provide further evidence that the eutherian X-chromosome has actively recruited sex and reproductive-related genes during mammalian evolution.


Assuntos
Gônadas/citologia , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Genes Ligados ao Cromossomo X , Proteínas de Homeodomínio/metabolismo , Humanos , Macropodidae , Camundongos , Gambás , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Espermatogênese/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Cromossomo X
19.
Biol Reprod ; 84(3): 595-603, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21123819

RESUMO

Kallmann syndrome is characterized by hypogonadotrophic hypogonadism and anosmia. The syndrome can be caused by mutations in several genes, but the X-linked form is caused by mutation in the Kallmann syndrome 1 (KAL1). KAL1 plays a critical role in gonadotropin-releasing hormone (GnRH) neuronal migration that is essential for the normal development of the hypothalamic-pituitary-gonadal axis. Interestingly, KAL1 appears to be missing from the rodent X, and no orthologue has been detected as yet. We investigated KAL1 during development and in adults of an Australian marsupial, the tammar wallaby, Macropus eugenii. Marsupial KAL1 maps to an autosome within a group of genes that was added as a block to the X chromosome in eutherian evolution. KAL1 expression was widespread in embryonic and adult tissues. In the adult testis, tammar KAL1 mRNA and protein were detected in the germ cells at specific stages of differentiation. In the adult testis, the protein encoded by KAL1, anosmin-1, was restricted to the round spermatids and elongated spermatids. In the adult ovary, anosmin-1 was not only detected in the oocytes but was also localized in the granulosa cells throughout folliculogenesis. This is the first examination of KAL1 mRNA and protein localization in adult mammalian gonads. The protein localization suggests that KAL1 participates in gametogenesis not only through the development of the hypothalamic-pituitary-gonadal axis by activation of GnRH neuronal migration, but also directly within the gonads themselves. Because KAL1 is autosomal in marsupials but is X-linked in eutherians, its conserved involvement in gametogenesis supports the hypothesis that reproduction-related genes were actively recruited to the eutherian X chromosome.


Assuntos
Gônadas/metabolismo , Síndrome de Kallmann/genética , Marsupiais/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Clonagem Molecular , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Expressão Gênica , Gônadas/embriologia , Síndrome de Kallmann/metabolismo , Macropodidae/embriologia , Macropodidae/genética , Macropodidae/metabolismo , Masculino , Marsupiais/embriologia , Marsupiais/metabolismo , Camundongos , Dados de Sequência Molecular , Organogênese/genética , Filogenia , Homologia de Sequência
20.
Front Neurol ; 12: 639690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305776

RESUMO

At present, the energy loss (EL) mechanism of intracranial aneurysm (IA) rupture is explored based on the global EL calculated by Bernoulli equation, but the details of EL are still unclear. This study aimed to explore the temporal and spatial characteristics of EL of IAs and reveal its mechanism. A novel method for calculating the EL of IAs based on dissipation function (DF) was proposed. DF was derived from the differential form of the energy equation and reflected the irreversible conversion from mechanical energy to internal energy caused by the friction between the fluid micelles. Eight sidewall IAs located at the posterior communicating segment of the internal carotid artery were collected; the three-dimensional (3D) geometric models of IAs were established employing image segmentation and 3D reconstruction. Computational fluid dynamics was applied to obtain hemodynamic parameters of IAs. The temporal and spatial characteristics of EL of IAs were achieved utilizing our proposed method. The simulation results indicated that EL occurred mainly in the boundary layer and the region adjacent to high-velocity inflow jet, EL increased rapidly during cardiac systole and reached its maximum at end-systolic phase and then decreased gradually during diastole until the end of cardiac cycle. The proposed method achieved some improvements over the traditional Bernoulli equation-based method by acquiring the temporal and spatial characteristics of EL, and it could provide insights into the EL of IAs and contribute to further rupture mechanism investigation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa