Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242092

RESUMO

Sound wave is an extensively existing mechanical wave, especially in marine and industrial plants where low-frequency acoustic waves are ubiquitous. The effective collection and utilization of sound waves provide a fresh new approach to supply power for the distributed nodes of the rapidly developing Internet of Things technology. In this paper, a novel acoustic triboelectric nanogenerator (QWR-TENG) was proposed for efficient low-frequency acoustic energy harvesting. QWR-TENG consisted of a quarter-wavelength resonant tube, a uniformly perforated aluminum film, an FEP membrane, and a conductive carbon nanotube coating. Simulation and experimental studies showed that QWR-TENG has two resonance peaks in the low-frequency range, which effectively extends the response bandwidth of acoustic-electrical conversion. The structural optimized QWR-TENG has excellent electrical output performance, and the maximum output voltage, short-circuit current and transferred charge are 255 V, 67 µA, and 153 nC, respectively, under the acoustic frequency of 90 Hz and sound pressure level of 100 dB. On this basis, a conical energy concentrator was introduced to the entrance of the acoustic tube, and a composite quarter-wavelength resonator-based triboelectric nanogenerator (CQWR-TENG) was designed to further enhance the electrical output. Results showed that the maximum output power and the power density per unit pressure of CQWR-TENG reached 13.47 mW and 2.27 WPa-1m-2, respectively. Application demonstrations indicated that QWR/CQWR-TENG has good capacitor charging performance and is expected to realize power supply for distributed sensor nodes and other small electrical devices.

2.
Nat Commun ; 13(1): 3325, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680888

RESUMO

Underwater communication is a critical and challenging issue, on account of the complex underwater environment. This study introduces an underwater wireless communication approach via Maxwell's displacement current generated by a triboelectric nanogenerator. Underwater electric field can be generated through a wire connected to a triboelectric nanogenerator, while current signal can be inducted in an underwater receiver certain distance away. The received current signals are basically immune to disturbances from salinity, turbidity and submerged obstacles. Even after passing through a 100 m long spiral water pipe, the electric signals are not distorted in waveform. By modulating and demodulating the current signals generated by a sound driven triboelectric nanogenerator, texts and images can be transmitted in a water tank at 16 bits/s. An underwater lighting system is operated by the triboelectric nanogenerator-based voice-activated controller wirelessly. This triboelectric nanogenerator-based approach can form the basis for an alternative wireless communication in complex underwater environments.

3.
Nanomaterials (Basel) ; 11(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34947780

RESUMO

Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions. Remarkably, the CHR-TENG could achieve a 58.2% higher power density per unit of sound pressure of acoustic energy harvesting compared with the ever-reported best result. In addition, the reported CHR-TENG was demonstrated by charging a 1000 µF capacitor up to 3 V in 165 s, powering a sensor for continuous temperature and humidity monitoring and lighting up as many as five 0.5 W commercial LED bulbs for acoustic energy harvesting. With a collection features of high output performance, lightweight, wide frequency response band and environmental friendliness, the cleverly designed CHR-TENG represents a practicable acoustic energy harvesting approach for powering sensor devices in the age of the Internet of Things.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa