Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Reprod Biol Endocrinol ; 22(1): 80, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997724

RESUMO

BACKGROUND: In recent years, with benefits from the continuous improvement of clinical technology and the advantage of fertility preservation, the application of embryo cryopreservation has been growing rapidly worldwide. However, amidst this growth, concerns about its safety persist. Numerous studies have highlighted the elevated risk of perinatal complications linked to frozen embryo transfer (FET), such as large for gestational age (LGA) and hypertensive disorders during pregnancy. Thus, it is imperative to explore the potential risk of embryo cryopreservation and its related mechanisms. METHODS: Given the strict ethical constraints on clinical samples, we employed mouse models in this study. Three experimental groups were established: the naturally conceived (NC) group, the fresh embryo transfer (Fresh-ET) group, and the FET group. Blastocyst formation rates and implantation rates were calculated post-embryo cryopreservation. The impact of FET on fetal growth was evaluated upon fetal and placental weight. Placental RNA-seq was conducted, encompassing comprehensive analyses of various comparisons (Fresh-ET vs. NC, FET vs. NC, and FET vs. Fresh-ET). RESULTS: Reduced rates of blastocyst formation and implantation were observed post-embryo cryopreservation. Fresh-ET resulted in a significant decrease in fetal weight compared to NC group, whereas FET reversed this decline. RNA-seq analysis indicated that the majority of the expression changes in FET were inherited from Fresh-ET, and alterations solely attributed to embryo cryopreservation were moderate. Unexpectedly, certain genes that showed alterations in Fresh-ET tended to be restored in FET. Further analysis suggested that this regression may underlie the improvement of fetal growth restriction in FET. The expression of imprinted genes was disrupted in both FET and Fresh-ET groups. CONCLUSION: Based on our experimental data on mouse models, the impact of embryo cryopreservation is less pronounced than other in vitro manipulations in Fresh-ET. However, the impairment of the embryonic developmental potential and the gene alterations in placenta still suggested it to be a risky operation.


Assuntos
Criopreservação , Transferência Embrionária , Placenta , Criopreservação/métodos , Feminino , Gravidez , Animais , Camundongos , Transferência Embrionária/métodos , Placenta/metabolismo , Embrião de Mamíferos , Implantação do Embrião/genética , Desenvolvimento Fetal/genética , Blastocisto/metabolismo
2.
Biol Reprod ; 107(1): 148-156, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35774031

RESUMO

The prevalence of gestational diabetes mellitus (GDM) is increasing rapidly. In addition to the metabolic disease risks, GDM might increase the risks of cryptorchidism in children. However, its mechanism involved in abnormalities of the male reproductive system is still unclear. The purpose of this study was to study the effects of GDM on the development of mouse fetal Leydig cells (FLCs) and Sertoli cells (SCs). Pregnant mice were treated on gestational days 6.5 and 12.5 with streptozotocin (100 mg/kg) or vehicle (sodium citrate buffer). Leydig cell and SC development and functions were evaluated by investigating serum testosterone levels, cell number and distribution, genes, and protein expression. GDM decreased serum testosterone levels, the anogenital distance, and the level of desert hedgehog in SCs of testes of male offspring. FLC number was also decreased in testes of GDM offspring by delaying the commitment of stem Leydig cells into the Leydig cell lineage. RNA-seq showed that FOXL2, RSPO1/ß-catenin signaling was activated and Gsk3ß signaling was inhibited in GDM offspring testis. In conclusion, GDM disrupted reproductive tract and testis development in mouse male offspring via altering genes related to development.


Assuntos
Diabetes Gestacional , Testículo , Animais , Diabetes Gestacional/metabolismo , Feminino , Desenvolvimento Fetal , Humanos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Gravidez , Células de Sertoli/metabolismo , Testículo/metabolismo , Testosterona
3.
Nat Commun ; 14(1): 6991, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914684

RESUMO

Follicle-stimulating hormone (FSH) is involved in mammalian reproduction via binding to FSH receptor (FSHR). However, several studies have found that FSH and FSHR play important roles in extragonadal tissue. Here, we identified the expression of FSHR in human and mouse pancreatic islet ß-cells. Blocking FSH signaling by Fshr knock-out led to impaired glucose tolerance owing to decreased insulin secretion, while high FSH levels caused insufficient insulin secretion as well. In vitro, we found that FSH orchestrated glucose-stimulated insulin secretion (GSIS) in a bell curve manner. Mechanistically, FSH primarily activates Gαs via FSHR, promoting the cAMP/protein kinase A (PKA) and calcium pathways to stimulate GSIS, whereas high FSH levels could activate Gαi to inhibit the cAMP/PKA pathway and the amplified effect on GSIS. Our results reveal the role of FSH in regulating pancreatic islet insulin secretion and provide avenues for future clinical investigation and therapeutic strategies for postmenopausal diabetes.


Assuntos
Hormônio Foliculoestimulante , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Secreção de Insulina , Glucose/farmacologia , Glucose/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Ilhotas Pancreáticas/metabolismo , Transdução de Sinais , Insulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mamíferos/metabolismo
4.
Front Genet ; 12: 689897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211505

RESUMO

Background: Observational studies have implied an association between polycystic ovary syndrome (PCOS) and psychiatric disorders. Here we examined whether PCOS might contribute causally to such disorders, focusing on anxiety disorder (AD), bipolar disorder (BIP), major depression disorder (MDD), obsessive compulsive disorder (OCD), and schizophrenia (SCZ). Methods: Causality was explored using two-sample Mendelian randomization (MR) with genetic variants as instrumental variables. The genetic variants were from summary data of genome-wide association studies in European populations. First, potential causal effects of PCOS on each psychiatric disorder were evaluated, and then potential reverse causality was also assessed once PCOS was found to be causally associated with any psychiatric disorder. Causal effects were explored using inverse variance weighting, MR-Egger analysis, simulation extrapolation, and weighted median analysis. Results: Genetically predicted PCOS was positively associated with OCD based on inverse variance weighting (OR 1.339, 95% CI 1.083-1.657, p = 0.007), simulation extrapolation (OR 1.382, 95% CI 1.149-1.662, p = 0.009) and weighted median analysis (OR 1.493, 95% CI 1.145-1.946, p = 0.003). However, genetically predicted OCD was not associated with PCOS. Genetically predicted PCOS did not exert causal effects on AD, BIP, MDD, or SCZ. Conclusions: In European populations, PCOS may be a causal factor in OCD, but not AD, BIP, MDD, or SCZ.

5.
Mol Cell Endocrinol ; 529: 111264, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33811969

RESUMO

Over the past four decades, the global prevalence of obesity has increased rapidly in all age ranges. Emerging evidence suggests that paternal lifestyle and environmental exposure have a crucial role in the health of offspring. Therefore, the current study investigated the impact of paternal obesity on the metabolic profile of offspring in a male mouse model of obesity. Female offspring of obese fathers fed a high-fat diet (HFD) (60% kcal fat) showed hyperglycemia because of enhanced gluconeogenesis and elevated expression of phosphoenolpyruvate carboxykinase (PEPCK), which is a key enzyme involved in the regulation of gluconeogenesis. Methylation of the Igf2/H19 imprinting control region (ICR) was dysregulated in the liver of offspring, and the sperm, of HFD fathers, suggesting that epigenetic changes in germ cells contribute to this father-offspring transmission. In addition, we explored whether H19 might regulate hepatic gluconeogenesis. Our results showed that overexpression of H19 in Hepa1-6 cells enhanced the expression of PEPCK and gluconeogenesis by promoting nuclear retention of forkhead box O1 (FOXO1), which is involved in the transcriptional regulation of Pepck. Thus, the current study suggests that paternal exposure to HFD impairs the gluconeogenesis of offspring via altered Igf2/H19 DNA methylation.


Assuntos
Epigênese Genética , Hiperglicemia/genética , Fator de Crescimento Insulin-Like II/genética , Obesidade/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular , Metilação de DNA , Dieta Hiperlipídica/efeitos adversos , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Impressão Genômica , Gluconeogênese/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Padrões de Herança , Fator de Crescimento Insulin-Like II/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Processamento de Proteína Pós-Traducional , RNA Longo não Codificante/metabolismo , Espermatozoides/metabolismo
6.
Inflammation ; 43(1): 32-43, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894450

RESUMO

Air pollution events frequently occur in China during the winter. Most investigations of pollution studies have focused on the physical and chemical properties of PM2.5. Many of these studies have indicated that PM2.5 exacerbates asthma or eosinophil inflammation. However, few studies have evaluated the relationship between bacterial loads in PM2.5, and especially pathogenic bacteria and childhood asthma. Airborne PM2.5 samples from heavily polluted air were collected in Hangzhou, China between December 2014 and January 2015. PM2.5 and ovalbumin (OVA) were intratracheally administered twice in 4-week intervals to induce the allergic pulmonary inflammation in adolescent C57/BL6 mice. PM2.5 exposure caused neutrophilic alveolitis and bronchitis. In the presence of OVA, the levels of the Th2 cytokines IL-4, IL-12, and IL-17 were significantly increased in bronchoalveolar lavage fluids (BALF) after PM2.5 exposure, while eosinophil infiltration and mucin secretion were also induced. In addition to adjuvant effects on OVA-induced allergic inflammation, PM2.5 exposure also led to the maturation of dendritic cells. These results suggest that PM2.5 exposure may aggravate lung eosinophilia and that PM2.5-bound microbial can exacerbate allergic and inflammatory lung diseases.


Assuntos
Microbiologia do Ar , Pulmão/microbiologia , Material Particulado/toxicidade , Pneumonia/microbiologia , Eosinofilia Pulmonar/microbiologia , Hipersensibilidade Respiratória/microbiologia , Fatores Etários , Animais , Carga Bacteriana , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Modelos Animais de Doenças , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ovalbumina , Tamanho da Partícula , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Eosinofilia Pulmonar/induzido quimicamente , Eosinofilia Pulmonar/metabolismo , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/metabolismo , Células Th2/metabolismo , Células Th2/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa