Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Plant Cell Environ ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087779

RESUMO

In the ongoing arms race between rice and Magnaporthe oryzae, the pathogen employs effectors to evade the immune response, while the host develops resistance genes to recognise these effectors and confer resistance. In this study, we identified a novel Pik allele, Pik-W25, from wild rice WR25 through bulked-segregant analysis, creating the Pik-W25 NIL (Near-isogenic Lines) named G9. Pik-W25 conferred resistance to isolates expressing AvrPik-C/D/E alleles. CRISPR-Cas9 editing was used to generate transgenic lines with a loss of function in Pik-W25-1 and Pik-W25-2, resulting in loss of resistance in G9 to isolates expressing the three alleles, confirming that Pik-W25-induced immunity required both Pik-W25-1 and Pik-W25-2. Yeast two-hybrid (Y2H) and split luciferase complementation assays showed interactions between Pik-W25-1 and the three alleles, while Pik-W25-2 could not interact with AvrPik-C, -D, and -E alleles with Y2H assay, indicating Pik-W25-1 acts as an adaptor and Pik-W25-2 transduces the signal to trigger resistance. The Pik-W25 NIL exhibited enhanced field resistance to leaf and panicle blast without significant changes in morphology or development compared to the parent variety CO39, suggesting its potential for resistance breeding. These findings advance our knowledge of rice blast resistance mechanisms and offer valuable resources for effective and sustainable control strategies.

2.
Plant Dis ; 108(8): 2283-2290, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38587798

RESUMO

Rice blast, caused by Pyricularia oryzae, is one of the most destructive rice diseases worldwide. Using resistant rice varieties is the most cost-effective way to control rice blast. Consequently, it is critical to monitor the distribution frequency of avirulence (Avr) genes in rice planting fields to facilitate the breeding of resistant rice varieties. In this study, we established a rapid recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) detection system for the identification of AvrPik, Avr-Piz-t, and Avr-Pi9. The optimized reaction temperature and duration were 37°C and 20 min, indicating that the reaction system could be initiated by body temperature without relying on any precision instruments. Specificity analysis showed that the primer and probe combinations targeting the three Avr genes exhibited a remarkable specificity at genus-level detection. Under the optimized condition, the lower detected thresholds of AvrPik, Avr-Piz-t, and Avr-Pi9 were 10 fg/µl, 100 fg/µl, and 10 pg/µl, respectively. Notably, the detection sensitivity of the three Avr genes was much higher than that of PCR. In addition, we also successfully detected the presence of AvrPik, Avr-Piz-t, and Avr-Pi9 in the leaf and panicle blast lesions with the RPA-LFD detection system. In particular, the genomic DNA was extracted using the simpler PEG-NaOH rapid extraction method. In summary, we developed an RPA detection system for AvrPik, Avr-Pi9, and Avr-Piz-t, combined with the PEG-NaOH rapid DNA extraction method. The innovative approach achieved rapid, real-time, and accurate detection of the three Avr genes in the field, which is helpful to understand the distribution frequency of the three Avr genes in the field and provide theoretical reference for the scientific layout of resistant rice varieties.


Assuntos
Ascomicetos , Oryza , Doenças das Plantas , Doenças das Plantas/microbiologia , Oryza/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Virulência/genética , Genes Fúngicos/genética
3.
Fungal Genet Biol ; 159: 103668, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35041987

RESUMO

Autophagy is a conserved mechanism for nutrient and cytoplasmic components recycling in eukaryotic cell, in which E1-like enzyme Atg7 activates ubiquitin-like conjugation in the autophagy pathway. In plant pathogenic fungi Ustilaginoidea virens, UvAtg7, an ortholog of AAtg7 in baker's yeast was identified and functionally investigated. UvAtg7 was confirmed to be essential for autophagy, because the disruption of UvATG7 gene in U. virens completely blocked the fusion of autophagosome-like into vacuoles and catalytic degradation of GFP-UvAtg8 under N-starving condition. The fluorescent signal indicated UvAtg7 protein was dispersed in cytoplasma, but spatially coordinated with core autophagy protein UvAtg8 on occasion. Interestingly, disruption of UvATG7 in U. virens caused slightly reduction in mycelial growth, but resulted in a considerable decrease in virulence, conidia production in YT broth and chlamydospore formation on rice false smut balls. Moreover, the UvATG7 deletion mutants exhibited increased sensitivity to cell wall integrity stress caused by congo red and calcofluor white, meanwhile the UvATG7 deletion mutants showed decreased sensitivity to osmotic stress, cell membrane stress and reactiveoxygen stress caused by sorbitol, sodium dodecyl sulfate and H2O2, respectively. All of these defects in UvATG7 deletion mutants could be partially or completely restored by gene complementation. In general, our study indicates that UvAtg7 is essential in autophagy pathway and contributes to mycelial growth, virulence, asexual reproduction and cell stress response in U. virens.


Assuntos
Hypocreales , Oryza , Ustilaginales , Proteínas Relacionadas à Autofagia/metabolismo , Peróxido de Hidrogênio/metabolismo , Hypocreales/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Reprodução Assexuada , Virulência
4.
Plant Dis ; 106(4): 1128-1133, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34739329

RESUMO

Rice false smut (RFS), caused by Villosiclava virens, is an important fungal disease in panicles of rice. V. virens is a heterothallic ascomycete controlled by two opposite idiomorphs, MAT1-1 and MAT1-2. Previous study showed that sexual reproduction of V. virens plays an important role in the epidemic of RFS. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay to detect the mating type of V. virens easily and rapidly by using specific primers based on the mating type genes MAT1-1-2 and MAT1-2-1, respectively. The LAMP assay used only a water/dry bath and could recognize the mating type of V. virens in just 45 min. The LAMP assay was so sensitive that it could detect small amounts of V. virens genomic DNA (as low as 2.0 pg of MAT1-1 and 200.0 pg of MAT1-2) and was 10 times more sensitive than PCR. In addition, we demonstrated the application of mating type via LAMP assay by assessing the genomic DNA of V. virens isolated from rice fields. The high efficiency and specificity of this LAMP assay suggest that it can be used as a rapid testing tool in mating type recognition of V. virens isolates in the field.


Assuntos
Hypocreales , Oryza , Ustilaginales , Hypocreales/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Oryza/microbiologia , Reprodução
5.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233270

RESUMO

Members of the N-rich proteins (NRPs) gene family play important roles in the plant endoplasmic reticulum stress in response, which can be triggered by plant pathogens' infection. Previous studies of the NRP gene family have been limited to only a few plants, such as soybean and Arabidopsis thaliana. Thus, their evolutionary characteristics in the Oryza species and biological functions in rice defense against the pathogenic fungus Magnaporthe oryzae have remained unexplored. In the present study, we demonstrated that the NRP genes family may have originated in the early stages of plant evolution, and that they have been strongly conserved during the evolution of the Oryza species. Domain organization of NRPs was found to be highly conserved within but not between subgroups. OsNRP1, an NRP gene in the Oryza sativa japonica group, was specifically up-regulated during the early stages of rice-M. oryzae interactions-inhibited M. oryzae infection. Predicted protein-protein interaction networks and transcription-factor binding sites revealed a candidate interactor, bZIP50, which may be involved in OsNRP1-mediated rice resistance against M. oryzae infection. Taken together, our results established a basis for future studies of the NRP gene family and provided molecular insights into rice immune responses to M. oryzae.


Assuntos
Arabidopsis , Magnaporthe , Oryza , Arabidopsis/microbiologia , Resistência à Doença/genética , Magnaporthe/fisiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Mapas de Interação de Proteínas
6.
Environ Microbiol ; 23(9): 5463-5480, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288342

RESUMO

Pyricularia oryzae is a multi-host pathogen causing cereal disease, including the devastating rice blast. Panicle blast is a serious stage, leading to severe yield loss. Thirty-one isolates (average 4.1%) were collected from the rice panicle lesions at nine locations covering Jiangsu province from 2010 to 2017. These isolates were characterized as Pyricularia sp. jiangsuensis distinct from known Pyricularia species. The representative strain 18-2 can infect rice panicle, root and five kinds of grasses. Intriguingly, strain 18-2 can co-infect rice leaf with P. oryzae Guy11. The whole genome of P. sp. jiangsuensis 18-2 was sequenced. Nine effectors were distributed in translocation or inversion region, which may link to the rapid evolution of effectors. Twenty-one homologues of known blast-effectors were identified in strain 18-2, seven effectors including the homologues of SLP1, BAS2, BAS113, CDIP2/3, MoHEG16 and Avr-Pi54, were upregulated in the sample of inoculated panicle with strain 18-2 at 24 hpi compared with inoculation at 8 hpi. Our results provide evidences that P. sp. jiangsuensis represents an addition to the mycobiota of blast disease. This study advances our understanding of the pathogenicity of P. sp. jiangsuensis to hosts, which sheds new light on the adaptability in the co-evolution of pathogen and host.


Assuntos
Magnaporthe , Oryza , Grão Comestível , Magnaporthe/genética , Doenças das Plantas , Poaceae , Virulência
7.
Curr Genet ; 66(5): 989-1002, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32572596

RESUMO

Rice false smut caused by Villosiclava virens is one of the destructive diseases on panicles of rice. Sexual development of V. virens, controlled by mating-type locus, plays an important role in the prevalence of rice false smut and genetic diversity of the pathogen. However, how the mating-type genes mediate sexual development of the V. virens remains largely unknown. In this study, we characterized the two mating-type genes, MAT1-1-1 and MAT1-1-2, in V. virens. MAT1-1-1 knockout mutant showed defects in hyphal growth, conidia morphogenesis, sexual development, and increase in the tolerance to salt and osmotic stress. Targeted deletion of MAT1-1-2 not only impaired the sclerotia formation and pathogenicity of V. virens, but also reduced the production of conidia. The MAT1-1-2 mutant showed increases in tolerance to salt and hydrogen peroxide stress, but decreases in tolerance to osmotic stress. Yeast two-hybrid assay showed that MAT1-1-1 interacted with MAT1-1-2, indicating that those proteins might form a complex to regulate sexual development. In addition, MAT1-1-1 localized in the nucleus, and MAT1-1-2 localized in the cytoplasm. Collectively, our results demonstrate that MAT1-1-1 and MAT1-1-2 play important roles in the conidiation, stress response, sexual development, and pathogenicity of V. virens, thus providing new insights into the function of mating-type gene.


Assuntos
Genes Fúngicos Tipo Acasalamento , Hypocreales/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia , Desenvolvimento Sexual , Esporos Fúngicos/fisiologia , Estresse Fisiológico , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Virulência
8.
FASEB J ; 33(2): 3035-3050, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30354670

RESUMO

Phenotype transition of mesothelial cells, such as epithelial-to-mesenchymal transition (EMT), is one of the early mechanisms of peritoneal fibrosis, which is mediated by oxidative stress and inflammation. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a multiprotein oligomer that promotes the maturation of IL-1ß and IL-18. Paricalcitol is reported to exert an anti-inflammatory effect; however, there are no studies as to whether paricalcitol modulates the activation of NLRP3 inflammasome. We investigated the role of NLRP3 inflammasome in peritoneal EMT with an exploration of the effect of paricalcitol on oxidative stress, NLRP3 inflammasome, and EMT of mesothelial cells. TGF-ß1-induced EMT in human peritoneal mesothelial cells (HPMCs) was associated with an up-regulation of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and procaspase-1, with an increased production of IL-1ß and IL-18, which was ameliorated by small interfering (si)NLRP3, siASC, caspase inhibitors, or neutralizing antibodies for IL-1ß and IL-18. TGF-ß1 enhanced reactive oxygen species generation with an increase in NADPH oxidase (NOX) activity and mitochondrial NOX4 production. Paricalcitol alleviated TGF-ß1-induced EMT and the NLRP3 inflammasome, which was associated with a down-regulation of NOX activity by interfering with p47phox and p22phox interaction and mitochondrial NOX4 production in HPMCs. Taken together, paricalcitol ameliorated EMT of HPMCs via modulating an NOX-dependent increase in the activity of NLRP3 inflammasome. Paricalcitol could be a novel approach to protect the peritoneum from the development of EMT and peritoneal fibrosis.-Ko, J., Kang, H.-J., Kim, D.-A., Ryu, E.-S., Yu, M., Lee, H., Lee, H. K., Ryu, H.-M., Park, S.-H., Kim, Y.-L., Kang, D.-H. Paricalcitol attenuates TGF-ß1-induced phenotype transition of human peritoneal mesothelial cells (HPMCs) via modulation of oxidative stress and NLRP3 inflammasome.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ergocalciferóis/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peritônio/efeitos dos fármacos , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Apoptose , Células Cultivadas , Humanos , Inflamação/metabolismo , Inflamação/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Peritônio/metabolismo , Peritônio/patologia , Fenótipo , Transdução de Sinais
9.
Int J Clin Oncol ; 25(7): 1405-1411, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32221801

RESUMO

BACKGROUND: Tumor marker screening may be useful to evaluate tumor response and detect tumor recurrence. However, usefulness and cut-off value of squamous-cell carcinoma antigen (SCC-Ag) for recurrence and survival has not yet established in cervical cancer. METHODS: From January 2010 to October 2016, 304 patients with cervical squamous-cell carcinomas with FIGO stage IB-IVA who underwent curative chemoradiotherapy followed by brachytherapy at four institutions were included in this study. Serum SCC-Ag level was measured before treatment, re-measured after completion of treatment, and again at the time of relapse during follow-up. SCC-Ag levels at each measurement point were analyzed using receiver operating characteristic (ROC) curve. Their associations with recurrence-free survival (RFS) and overall survival (OS) were analyzed. RESULTS: During a median follow-up time of 36.5 months, there were 66 (21.7%) recurrences and 76 (25.0%) deaths. The ROC curve showed optimal Youden indices were 4, 1.5, and 4 ng/mL at pretreatment, treatment, and recurrence, respectively. In patients with SCC-Ag ≥ 4 ng/mL, not SCC-Ag < 4 ng/mL before treatment, post-treatment SCC-Ag level (≥ 1.5 ng/mL vs. < 1.5 ng/mL) showed significant differences in 3-year RFS (65.5% vs. 45.0%, p < 0.001) and OS (78.5% vs. 55.4%, p < 0.001). In 66 recurrent patients, patients with SCC-Ag ≥ 4 ng/mL at recurrence showed a significantly lower OS rate than others (59.5% vs. 33.0%, p = 0.041). CONCLUSIONS: SCC-Ag level after treatment and at recurrence was useful for predicting recurrence and survival only when its pretreatment value was high (≥ 4 ng/mL).


Assuntos
Antígenos de Neoplasias/sangue , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/terapia , Serpinas/sangue , Neoplasias do Colo do Útero/mortalidade , Neoplasias do Colo do Útero/terapia , Idoso , Biomarcadores Tumorais/sangue , Braquiterapia , Carcinoma de Células Escamosas/patologia , Quimiorradioterapia , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Curva ROC , Estudos Retrospectivos , Neoplasias do Colo do Útero/patologia
10.
Genome ; 62(12): 807-816, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31437416

RESUMO

In filamentous fungi, the conserved transcription factors play important roles in multiple cellular and developmental processes. The GATA proteins, a family of GATA-binding zinc finger transcription factors, play diverse functions in fungi. Ustilaginoidea virens is an economically important pathogen-causing rice false smut worldwide. To gain additional insight into the cellular and molecular mechanisms of this pathogen, in this study, we identified and functionally characterized seven GATA proteins from the U. virens genome (UvGATA). Sequences analysis indicated that these GATA proteins are divided into seven clades. The proteins in each clade contained conserved clade-specific sequences and structures, thus leading to the same motif serving different purposes in various contexts. The expression profiles of UvGATA genes at different infection stages and under H2O2 stress were detected. Results showed that the majority of UvGATA genes performed functions at both processes, thereby confirming the roles of these genes in pathogenicity and reactive oxygen species stress tolerance. This study provided an important starting point to further explore the biological functions of UvGATA genes and increased our understanding of their potential transcriptional regulatory mechanisms in U. virens.


Assuntos
Fatores de Transcrição GATA/genética , Hypocreales/genética , Família Multigênica , Fatores de Transcrição GATA/química , Fatores de Transcrição GATA/classificação , Fatores de Transcrição GATA/metabolismo , Expressão Gênica/efeitos dos fármacos , Genoma Fúngico , Peróxido de Hidrogênio/farmacologia , Oryza/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Domínios Proteicos
11.
Int J Colorectal Dis ; 34(1): 105-112, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30350135

RESUMO

PURPOSE: The objective of this study was to evaluate whether change of white blood-cell (WBC) count before and during chemoradiotherapy (CRT) might be associated with susceptibility to radiation and tumor response. METHODS: Medical records of 641 patients with rectal cancer who received preoperative CRT followed by curative surgery were retrospectively reviewed in five tertiary centers. Complete blood cell with differential count was measured weekly during the period of CRT. We assessed nadir/pre-CRT ratio of WBC count as a predictor for tumor response to CRT and a prognostic factor for recurrence-free survival. RESULTS: Enrolled patients were divided into low WBC ratio (LWR) and high WBC ratio (HWR) arms with cut-off value of 0.49 calculated by receiver operating characteristic curve. Of 641 patients, 490 (76.4%) and 151 (23.6%) were categorized into HWR (> 0.49) arm and LWR (≤ 0.49) arms, respectively. Complete pathologic response rate after CRT was significantly higher in LWR arm than that in HWR arm (23.8% vs. 12.2%, p = 0.001). In logistic regression analysis, carcinoembryonic antigen (CEA) level over 5 ng/ml [adjusted odds ratio (OR) 0.566, 95% confidence interval (CI) 0.351-0.912; p = 0.019) and HWR (adjusted OR 0.412, 95% CI 0.256-0.663; p = 0.001) were significantly negative factors of pathologic complete response. The 5-year recurrence-free survival rate was significantly higher in the LWR group than that in the HWR group (83.3% vs. 67.6%, p = 0.001). CONCLUSION: Low nadir/pre-chemoradiotherapy ratio during preoperative CRT can predict good tumor response. It is significantly associated with improved recurrence-free survival in rectal cancer.


Assuntos
Quimiorradioterapia , Recidiva Local de Neoplasia/patologia , Neoplasias Retais/sangue , Neoplasias Retais/terapia , Idoso , Intervalo Livre de Doença , Análise Fatorial , Feminino , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Curva ROC , Neoplasias Retais/patologia , Resultado do Tratamento
12.
Pestic Biochem Physiol ; 153: 144-151, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30744888

RESUMO

The plant-pathogenic fungus Ustilaginoidea virens (Cooke) Takah causes rice false smut (RFS), which is responsible for significant quantitative and qualitative losses in rice industry. Propiconazole is a triazole fungicide which belongs to Demethylation inhibitors (DMIs). It is used to control RFS in China. We previously screened 158 isolates of U. virens collected in the fields in 2015 in Jiangsu province of China, and found two of them were highly resistant to propiconazole (named 82 and 88, respectively). In this study, we have analyzed the physiological and biochemical characters of six field-sensitive isolates and the two field-resistant isolates, including mycelial growth and cell wall integrity. We found there was cross-resistance between different DMIs fungicides, but was no cross-resistance between DMIs and QoIs fungicides. We also analyzed the fitness, and found the pathogenicity in 88 was stronger than the field-sensitive isolates, but was completely lost in 82. Sequence analyses of CYP51 and the 1000-bp upstream of CYP51 coding region showed no mutation in 82 compared to the field-sensitive strains, but two more bases CC were identified at 154-bp upstream of the coding region in the field-resistant isolate 88. Moreover, the expression of CYP51 gene in all tested isolates was significantly induced by propiconazole. However, the up-regulation expression level in both 82 and 88 was much higher than that in the field-sensitive isolates. We also found propiconazole could inhibit the ergosterol biosynthesis in the field-sensitive isolates, but stimulated it in both field-resistant isolates 82 and 88. Given the high level of U. virens developing propiconazole resistance and the good fitness of the field-resistant isolate 88, the resistance of U. virens to DMIs must be monitored and managed in rice fields.


Assuntos
Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Hypocreales/efeitos dos fármacos , Oryza/microbiologia , Triazóis/farmacologia , Ergosterol/biossíntese , Proteínas Fúngicas/genética , Hypocreales/patogenicidade , Hypocreales/fisiologia , Doenças das Plantas/prevenção & controle , Esterol 14-Desmetilase/genética
13.
Curr Genet ; 63(1): 131-144, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27306226

RESUMO

Ustilaginoidea virens is the causal agent of rice false smut disease resulting in quantitative and qualitative losses in rice. To gain insights into the pathogenic mechanisms of U. virens, we established a T-DNA insertion mutant library of U. virens through Agrobacterium tumefaciens-mediated transformation and selected an enhanced pathogenicity mutant (i.e., B3277). We analyzed the biological characteristics of the wild-type P1 and B3277. The growth rate and sporulation of B3277 were decreased compared with those of P1; the ferrous iron could be utilized by B3277, but inhibited the growth of P1. Southern blot analysis was performed to verify the copy number of the foreign gene inserted in the genomic DNA and only one copy of the T-DNA was found. The combined hiTAIL-PCR with RACE-PCR analysis showed the successful cloning of full length of the T-DNA flanking gene associated with pathogenicity, named Uvt3277. Gene expression was analyzed using real-time PCR. Results revealed that Uvt3277 was expressed at lower levels in B3277 than in P1. This gene was then subjected to bioinformatics analysis. The encoded protein of Uvt3277 exhibited high homology with low-affinity iron transporter proteins in some fungi. Transformation of the RNAi vector by constructing the hairpin RNA of the target gene was confirmed as successful. The pathogenicity of the transformant also increased. These results suggested that Uvt3277 may have an important function associated with the pathogenesis of U. virens. This study provides insights into the pathogenic mechanism of U. virens and a molecular target of disease control.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Transporte Biológico , Clonagem Molecular , Análise por Conglomerados , DNA Bacteriano , Mutação , Oryza/microbiologia , Fenótipo , Característica Quantitativa Herdável , Interferência de RNA , Análise de Sequência de DNA
14.
Curr Genet ; 62(3): 575-84, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26905382

RESUMO

Sexual reproduction of heterothallic clavicipitaceous fungus Villosiclava virens (anamorph: Ustilaginoidea virens) generates ascospores, which is considered as primary infection source of rice false smut disease. However, little is known about the molecular underpinnings of sexual reproduction in V. virens. In this study, transcriptomes of V. virens in fruiting body (FB) and sporulating mycelia (SM) were compared using Illumina paired-end sequencing technology. A total of 33,384,588 and 23,765,275 clean reads of FB and SM transcriptome profiles could be used to map cDNA of V. virens, respectively. We evaluated the gene expression variations between FB and SM, a total of 488 genes therein were significantly higher expressed in FB than SM, and 342 genes were significantly higher expressed genes in SM than FB. These differentially expressed genes were annotated using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. Several genes were found to specifically function in sexual reproduction, involving in mating type, pheromone synthesis, signaling transduction, transcription factors, and meiosis; additionally, a few of genes were presumed to function in conidia sporulation and infection. Comparative transcriptome analysis of V. virens during FB and SM provided an overview of gene expression profiles at the transcriptional level and provided hints to better understand the molecular mechanisms of sexual development. Additionally, the data presented here also proved benefit for mining of essential genes contributing to sexual conidiation and infection.


Assuntos
Ascomicetos/fisiologia , Carpóforos , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Micélio , Transcriptoma , Biologia Computacional , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular
15.
Fungal Genet Biol ; 76: 10-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25636735

RESUMO

Agrobacterium tumefaciens-mediated transformation (ATMT) is becoming a popular effective system as an insertional mutagenesis tool in filamentous fungi. To gain more insight into the cellular and molecular mechanisms in the pathogenesis of Ustilaginoidea virens, the causal agent of rice false smut disease, a T-DNA insertion mutant library of U. virens was established using ATMT. We optimized a range of conditions to improve the transformation efficiency. Transformants were most effectively obtained when the optimal co-cultivation time is 72h, with 50µM AS in medium and 100µl A. tumefaciens for co-cultivation, leading to the production of 160-185 hygromycin B resistant transformants per 1×10(5) conidia. Southern blot analysis indicated that 58.14% of transformants had a single T-DNA copy. Among 5600 transformants tested for virulence, 37 mutants with reproducible pathogenic defects were obtained. The flanking sequences of three avirulent tranformants (B20, B1015 and B1465) and two pathogenicity-reduced transformants (B726 and B785) were amplified by high-efficiency thermal asymmetric interlaced PCR. Sequence analyses revealed that single T-DNA insertion in mutant B20 targeted the coding region of a gene encoding a protein highly similar to SUN family protein, and in mutant B726 targeted upstream of a gene with unknown function. The two T-DNA insertion sites in mutant B785 were found in the coding region of a gene encoding C6 transcription factor, but failed in amplified flanking sequence of another T-DNA. Chromosomal rearrangement occurred in the genome of mutant B1016 and B1465 with single T-DNA insertion. Among avirulent mutants, B20 showed altered colony growth and pigmentation. The T-DNA insert in B20 was detected in the coding region of a gene named UvSUN2. Morphophysiological characterization analysis suggested that UvSUN2 might be a virulence factor, and possibly required for proper fungal growth, cell wall construction, and stress responses in U. virens. This study optimize and validate the transformation procedure, maximizing the number of single copy transformants and developing an efficient procedure for rescuing adjacent host sequences along with the inserted T-DNA. This is the first report of identification several candidate virulence factors and validated one in U. virens. Together with identification of avirulent mutants and their associated genes, results suggested that ATMT can effectively be used to identify genes associated with pathogenicity in U. virens, and provided novel insights into molecular mechanisms underlying virulence of this pathogen.


Assuntos
Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Oryza/microbiologia , Agrobacterium tumefaciens/genética , Ascomicetos/genética , Mutagênese Insercional , Mutação , Esporos Fúngicos/genética , Transformação Genética , Virulência
16.
Lab Invest ; 94(10): 1147-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25111692

RESUMO

Aminoglycoside-induced nephrotoxicity is one of the prevalent causes of acute kidney injury (AKI). Oxidative stress-mediated apoptosis of renal tubular cells is known to be a major mechanism of renal injury. Red ginseng extract (RGE) has been reported to possess antioxidant and immune-modulatory activities. We investigated the effect of RGE on gentamicin (GM)-induced apoptosis and oxidative stress in cultured renal tubular cells and animal model of GM-induced AKI. GM induced the generation of reactive oxygen species (ROS) with an increase in NADPH oxidase (NOX) activity and mitochondrial oxidation in NRK-52E cells that were ameliorated with RGE. GM-induced apoptosis of NRK-52E cells, which was associated with an increased expression of mitochondrial Bax, cytosolic cytochrome c, and cleaved caspase-9 and -3, along with a decrease in bcl-2 expression, was also blocked by RGE. In an animal model of GM-induced AKI, RGE treatment significantly attenuated renal dysfunction, cell apoptosis, and tubular damage. RGE ameliorated ROS production in rats with GM-induced AKI, as demonstrated by an increase in the reduced form of glutathione in renal cortex and a decrease in urinary excretion of 8-hydroxy-2'-deoxyguanosine. Our results suggest that RGE protects the kidney from GM-induced AKI via the mechanism of modulation of oxidative stress.


Assuntos
Injúria Renal Aguda/prevenção & controle , Túbulos Renais/efeitos dos fármacos , Panax , Fitoterapia , Extratos Vegetais/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Gentamicinas/efeitos adversos , Masculino , NADPH Oxidases/metabolismo , Extratos Vegetais/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
17.
Cells ; 13(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39195274

RESUMO

The presence of the odorant 2-methylisoborneol (2-MIB) in drinking water sources is undesirable. Although 2-MIB production is known to be influenced by temperature, its regulation at the gene level and its relationship with Chlorophyll-a (Chl-a) at different temperatures remain unclear. This study investigates the impact of temperature on 2-MIB production and related gene expression in Pseudanabaena strains PD34 and PD35 isolated from Lake Paldang, South Korea. The strains were cultured at three temperatures (15, 25, and 30 °C) to examine cell growth, 2-MIB production, and mic gene expression levels. 2-MIB production per cell increased with higher temperatures, whereas mic gene expression levels were higher at lower temperatures, indicating a complex regulatory mechanism involving post-transcriptional and enzyme kinetics factors. Additionally, the relationship between Chl-a and 2-MIB involved in metabolic competition was analyzed, suggesting that high temperatures appear to favor 2-MIB synthesis more than Chl-a synthesis. The distinct difference in the total amount of the two products and the proportion of 2-MIB between the two strains partially explains the variations in 2-MIB production. These findings highlight the significant effect of temperature on 2-MIB biosynthesis in Pseudanabaena and provide a valuable background for gene data-based approaches to manage issues regarding 2-MIB in aquatic environments.


Assuntos
Canfanos , Temperatura , Canfanos/metabolismo , Clorofila A/metabolismo , Regulação Bacteriana da Expressão Gênica , República da Coreia
18.
Virulence ; 15(1): 2301243, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38240294

RESUMO

Rice false smut disease is one of the most significant rice diseases worldwide. Ustilaginoidea virens is the causative agent of this disease. Although several developmental and pathogenic genes have been identified and functionally analyzed, the pathogenic molecular mechanisms of U. virens remain elusive. The velvet family regulatory proteins are involved in fungal development, conidiation, and pathogenicity. In this study, we demonstrated the function of the VelC homolog UvVELC in U. virens. We identified the velvet family protein UvVELC and characterized its functions using a target gene deletion-strategy. Deletion of UvVELC resulted in conidiation failure and pathogenicity. The UvVELC expression levels during infection suggested that this gene might be involved in the early infection process. UvVELC is also important in resistance to abiotic stresses, the utilization efficiency of glucose, stachyose, raffinose, and other sugars, and the expression of transport-related genes. Moreover, UvVELC could physically interact with UvVEA in yeast, and UvVELC/UvVEA double-knockout mutants also failed in conidiation and pathogenicity. These results indicate that UvVELC play a critical role in the conidiation and pathogenicity in U. virens. Functional analysis indicated that UvVELC-mediated conidiation and nutrient acquisition from rice regulates the pathogenicity of U. virens. Understanding the function of the UvVELC homolog could provide a potential molecular target for controlling rice false smut disease.


Assuntos
Hypocreales , Oryza , Oryza/microbiologia , Virulência , Hypocreales/genética , Estresse Fisiológico/genética , Doenças das Plantas/microbiologia
19.
Mol Plant Pathol ; 25(3): e13448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502297

RESUMO

Ras GTPase-activating proteins (Ras GAPs) act as negative regulators for Ras proteins and are involved in various signalling processes that influence cellular functions. Here, the function of four Ras GAPs, UvGap1 to UvGap4, was identified and analysed in Ustilaginoidea virens, the causal agent of rice false smut disease. Disruption of UvGAP1 or UvGAP2 resulted in reduced mycelial growth and an increased percentage of larger or dumbbell-shaped conidia. Notably, the mutant ΔUvgap1 completely lost its pathogenicity. Compared to the wild-type strain, the mutants ΔUvgap1, ΔUvgap2 and ΔUvgap3 exhibited reduced tolerance to H2 O2 oxidative stress. In particular, the ΔUvgap1 mutant was barely able to grow on the H2 O2 plate, and UvGAP1 was found to influence the expression level of genes involved in reactive oxygen species synthesis and scavenging. The intracellular cAMP level in the ΔUvgap1 mutant was elevated, as UvGap1 plays an important role in maintaining the intracellular cAMP level by affecting the expression of phosphodiesterases, which are linked to cAMP degradation in U. virens. In a yeast two-hybrid assay, UvRas1 and UvRasGef (Ras guanyl nucleotide exchange factor) physically interacted with UvGap1. UvRas2 was identified as an interacting partner of UvGap1 through a bimolecular fluorescence complementation assay and affinity capture-mass spectrometry analysis. Taken together, these findings suggest that the UvGAP1-mediated Ras pathway is essential for the development and pathogenicity of U. virens.


Assuntos
Hypocreales , Oryza , Proteínas Ativadoras de GTPase/genética , Oryza/microbiologia , Proteínas Ativadoras de ras GTPase , Doenças das Plantas/microbiologia
20.
Microorganisms ; 11(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764175

RESUMO

Cyanobacteria can exist in water resources and produce odorants. 2-Methylisoborneol (2-MIB) and geosmin are the main odorant compounds affecting the drinking water quality in reservoirs. In this study, encoding genes 2-MIB (mic, monoterpene cyclase) and geosmin (geo, putative geosmin synthase) were investigated using newly developed primers for quantitative PCR (qPCR). Gene copy numbers were compared to 2-MIB/geosmin concentrations and cyanobacterial cell abundance. Samples were collected between July and October 2020, from four drinking water sites in South Korea. The results showed similar trends in three parameters, although the changes in the 2-MIB/geosmin concentrations followed the changes in the mic/geo copy numbers more closely than the cyanobacterial cell abundances. The number of odorant gene copies decreased from upstream to downstream. Regression analysis revealed a strong positive linear correlation between gene copy number and odorant concentration for mic (R2 = 0.8478) and geo (R2 = 0.601). In the analysis of several environmental parameters, only water temperature was positively correlated with both mic and geo. Our results demonstrated the feasibility of monitoring 2-MIB/geosmin occurrence using qPCR of their respective synthase genes. Odorant-producing, gene-based qPCR monitoring studies may contribute to improving drinking water quality management.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa