Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Sci Monit ; 22: 3727-3736, 2016 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-27744455

RESUMO

BACKGROUND Endometriosis can cause dysmenorrhea and infertility. Its pathogenesis has not yet been clarified and its treatment continues to pose enormous challenges. The protein tyrosine phosphatase (PTEN) gene is a tumor suppressor gene. The aim of this study was to investigate the role and significance of PTEN protein in the occurrence, development, and treatment of endometriosis through changes in apoptosis rate, cell cycle, and angiogenesis. MATERIAL AND METHODS PTEN was overexpressed and silenced in lentiviral vectors and inserted into primary endometrial cells. The changes in cell cycle and apoptosis in the different PTEN expression groups were evaluated using flow cytometry. Vessel growth mimicry was observed using 3-dimensional culture. A human-mouse chimeric endometriosis model was constructed using SCID mice. Hematoxylin and eosin staining and immunohistochemistry were used to detect pathological changes in ectopic endometrial tissues and the expression of VEGF protein in a human-mouse chimeric endometriosis mouse model. RESULTS PTEN overexpression significantly increased apoptosis and inhibited the cell cycle compared with the silenced and control groups. Furthermore, cells expressing low PTEN levels were better able to undergo vasculogenic mimicry, and exhibited significantly increased angiogenesis compared to cells overexpressing PTEN. We found that ectopic foci were more easily formed in the endometrial tissue of SCID mice with low PTEN expression, and the VEGF expression in this group was relatively high. CONCLUSIONS PTEN inhibits the occurrence and development of endometriosis by regulating angiogenesis and the apoptosis and cell cycle of endometrial cells; therefore, we propose that the PTEN gene can be used to treat endometriosis.


Assuntos
Endometriose/enzimologia , Endometriose/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Animais , Apoptose/genética , Proliferação de Células/fisiologia , Células Cultivadas , Endometriose/patologia , Endométrio/enzimologia , Endométrio/patologia , Feminino , Genes Supressores de Tumor , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Projetos Piloto , Transdução de Sinais
2.
Biomed Pharmacother ; 72: 83-90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26054679

RESUMO

The human uterine cervix carcinoma is one of the most well-known malignancy reproductive system cancers, which threatens women health globally. However, the mechanisms of the oncogenesis and development process of cervix carcinoma are not yet fully understood. Long non-coding RNAs (lncRNAs) have been proved to play key roles in various biological processes, especially development of cancer. The function and mechanism of lncRNAs on cervix carcinoma is still rarely reported. We selected 3 cervix cancer and normal cervix tissues separately, then performed lncRNA microarray to detect the differentially expressed lncRNAs. Subsequently, we explored the potential function of these dysregulated lncRNAs through online bioinformatics databases. Finally, quantity real-time PCR was carried out to confirm the expression levels of these dysregulated lncRNAs in cervix cancer and normal tissues. We uncovered the profiles of differentially expressed lncRNAs between normal and cervix carcinoma tissues by using the microarray techniques, and found 1622 upregulated and 3026 downregulated lncRNAs (fold-change>2.0) in cervix carcinoma compared to the normal cervical tissue. Furthermore, we found HOXA11-AS might participate in cervix carcinogenesis by regulating HOXA11, which is involved in regulating biological processes of cervix cancer. This study afforded expression profiles of lncRNAs between cervix carcinoma tissue and normal cervical tissue, which could provide database for further research about the function and mechanism of key-lncRNAs in cervix carcinoma, and might be helpful to explore potential diagnosis factors and therapeutic targets for cervix carcinoma.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/genética , Colo do Útero/metabolismo , Colo do Útero/patologia , Feminino , Ontologia Genética , Humanos , Anotação de Sequência Molecular , RNA Longo não Codificante/metabolismo , Reprodutibilidade dos Testes , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa