Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(6): nwae158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881574

RESUMO

Fiber electronics with flexible and weavable features can be easily integrated into textiles for wearable applications. However, due to small sizes and curved surfaces of fiber materials, it remains challenging to load robust active layers, thus hindering production of high-sensitivity fiber strain sensors. Herein, functional sensing materials are firmly anchored on the fiber surface in-situ through a hydrolytic condensation process. The anchoring sensing layer with robust interfacial adhesion is ultra-mechanically sensitive, which significantly improves the sensitivity of strain sensors due to the easy generation of microcracks during stretching. The resulting stretchable fiber sensors simultaneously possess an ultra-low strain detection limit of 0.05%, a high stretchability of 100%, and a high gauge factor of 433.6, giving 254-folds enhancement in sensitivity. Additionally, these fiber sensors are soft and lightweight, enabling them to be attached onto skin or woven into clothes for recording physiological signals, e.g. pulse wave velocity has been effectively obtained by them. As a demonstration, a fiber sensor-based wearable smart healthcare system is designed to monitor and transmit health status for timely intervention. This work presents an effective strategy for developing high-performance fiber strain sensors as well as other stretchable electronic devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa