Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 57(7): 3348-57, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23650175

RESUMO

The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.


Assuntos
Anti-Infecciosos , Bases de Dados Genéticas , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Sequência de Bases , Biologia Computacional , Genoma Bacteriano , Internet , Interface Usuário-Computador
2.
Cell Rep ; 13(7): 1481-1492, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26549450

RESUMO

There is an urgent need to identify new treatments for fungal infections. By combining sub-lethal concentrations of the known antifungals fluconazole, caspofungin, amphotericin B, terbinafine, benomyl, and cyprodinil with ∼3,600 compounds in diverse fungal species, we generated a deep reservoir of chemical-chemical interactions termed the Antifungal Combinations Matrix (ACM). Follow-up susceptibility testing against a fluconazole-resistant isolate of C. albicans unveiled ACM combinations capable of potentiating fluconazole in this clinical strain. We used chemical genetics to elucidate the mode of action of the antimycobacterial drug clofazimine, a compound with unreported antifungal activity that synergized with several antifungals. Clofazimine induces a cell membrane stress for which the Pkc1 signaling pathway is required for tolerance. Additional tests against additional fungal pathogens, including Aspergillus fumigatus, highlighted that clofazimine exhibits efficacy as a combination agent against multiple fungi. Thus, the ACM is a rich reservoir of chemical combinations with therapeutic potential against diverse fungal pathogens.


Assuntos
Antifúngicos/farmacologia , Clofazimina/farmacologia , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/efeitos dos fármacos , Schizosaccharomyces/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa