Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(28): 8587-8594, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38967395

RESUMO

Single-unit cell (1 UC) FeSe interfaced with TiOx or FeOx exhibits significantly enhanced superconductivity compared to that of bulk FeSe, with interfacial electron-phonon coupling (EPC) playing a crucial role. However, the reduced dimensionality in 1 UC FeSe, which may drive superconducting fluctuations, complicates our understanding of the enhancement mechanisms. We construct a new superconducting interface, 1 UC FeSe/SrVO3/SrTiO3. Here, the itinerant electrons of highly metallic SrVO3 films can screen all high-energy Fuchs-Kliewer phonons, including those of SrTiO3, making it the first FeSe/oxide system with screened interfacial EPC while maintaining the 1 UC FeSe thickness. Despite comparable doping levels, the heavily electron-doped 1 UC FeSe/SrVO3 exhibits a pairing temperature (Tg ∼ 48 K) lower than those of FeSe/SrTiO3 and FeSe/LaFeO3. Our findings disentangle the contributions of interfacial EPC from dimensionality in terms of enhancing Tg in FeSe/oxide interfaces, underscoring the critical importance of interfacial EPC. This FeSe/VOx interface also provides a platform for studying interfacial superconductivity.

2.
Adv Mater ; : e2310668, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101291

RESUMO

Strongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO3, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phenomena. An important example is the LaNiO3/LaTiO3 superlattice, where an interlayer electron transfer has been observed from LaTiO3 into LaNiO3 leading to a high-spin state. However, macroscopic emergence of magnetic order associated with this high-spin state has so far not been observed. Here, by using muon spin rotation, x-ray absorption, and resonant inelastic x-ray scattering, direct evidence of an emergent antiferromagnetic order with high magnon energy and exchange interactions at the LaNiO3/LaTiO3 interface is presented. As the magnetism is purely interfacial, a single LaNiO3/LaTiO3 interface can essentially behave as an atomically thin strongly-correlated quasi-2D antiferromagnet, potentially allowing its technological utilization in advanced spintronic devices. Furthermore, its strong quasi-2D magnetic correlations, orbitally-polarized planar ligand holes, and layered superlattice design make its electronic, magnetic, and lattice configurations resemble the precursor states of superconducting cuprates and nickelates, but with an S→1 spin state instead.

3.
Sci Adv ; 7(52): eabi5833, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936435

RESUMO

The electronic structure of heterointerfaces is a pivotal factor for their device functionality. We use soft x-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures on both sides of the Schottky heterointerface formed by epitaxial films of the superconducting NbN on semiconducting GaN, and determine their momentum-dependent interfacial band offset as well as the band-bending profile. We find, in particular, that the Fermi states in NbN are well separated in energy and momentum from the states in GaN, excluding any notable electronic cross-talk of the superconducting states in NbN to GaN. We support the experimental findings with first-principles calculations for bulk NbN and GaN. The Schottky barrier height obtained from photoemission is corroborated by electronic transport and optical measurements. The momentum-resolved understanding of electronic properties of interfaces elucidated in our work opens up new frontiers for the quantum materials where interfacial states play a defining role.

4.
Nat Commun ; 12(1): 3122, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035254

RESUMO

In ultrathin films of FeSe grown on SrTiO3 (FeSe/STO), the superconducting transition temperature Tc is increased by almost an order of magnitude, raising questions on the pairing mechanism. As in other superconductors, antiferromagnetic spin fluctuations have been proposed to mediate SC making it essential to study the evolution of the spin dynamics of FeSe from the bulk to the ultrathin limit. Here, we investigate the spin excitations in bulk and monolayer FeSe/STO using resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to its bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems revealing a remarkable reconfiguration of spin excitations in FeSe/STO, essential to understand the role of spin fluctuations in the pairing mechanism.

5.
Nat Commun ; 12(1): 5926, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635672

RESUMO

Enormous enhancement of superconducting pairing temperature (Tg) to 65 K in FeSe/SrTiO3 has made it a spotlight. Despite the effort of interfacial engineering, FeSe interfaced with TiOx remains the unique case in hosting high Tg, hindering a decisive understanding on the general mechanism and ways to further improving Tg. Here we constructed a new high-Tg interface, single-layer FeSe interfaced with FeOx-terminated LaFeO3. Large superconducting gap and diamagnetic response evidence that the superconducting pairing can emerge near 80 K, highest amongst all-known interfacial superconductors. Combining various techniques, we reveal interfacial charge transfer and strong interfacial electron-phonon coupling (EPC) in FeSe/LaFeO3, showing that the cooperative pairing mechanism works beyond FeSe-TiOx. Intriguingly, the stronger interfacial EPC than that in FeSe/SrTiO3 is likely induced by the stronger interfacial bonding in FeSe/LaFeO3, and can explain the higher Tg according to recent theoretical calculations, pointing out a workable route in designing new interfaces to achieve higher Tg.

6.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355138

RESUMO

Magnetic Weyl semimetals are a newly discovered class of topological materials that may serve as a platform for exotic phenomena, such as axion insulators or the quantum anomalous Hall effect. Here, we use angle-resolved photoelectron spectroscopy and ab initio calculations to discover Weyl cones in CoS2, a ferromagnet with pyrite structure that has been long studied as a candidate for half-metallicity, which makes it an attractive material for spintronic devices. We directly observe the topological Fermi arc surface states that link the Weyl nodes, which will influence the performance of CoS2 as a spin injector by modifying its spin polarization at interfaces. In addition, we directly observe a minority-spin bulk electron pocket in the corner of the Brillouin zone, which proves that CoS2 cannot be a true half-metal.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa