Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 205: 112467, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863983

RESUMO

Water pollution is a global issue that has drastically increased in recent years due to rapid industrial development. Different technologies have been designed for the removal of pollutants from wastewater. However, most of these techniques are expensive, generate new waste, and focus solely on metal removal instead of metal recovery. In this study, novel facultative exoelectrogenic strains designated Castellaniella sp. A5, Castellaniella sp. B3, and Castellaniella sp. A3 were isolated from a microbial fuel cell (MFC). These isolates were utilized as pure and mixed culture inoculums in a bioelectrochemical system (BES) to produce bioelectricity and treat simulated industrial wastewater. A single-chamber MFC inoculated with the mixed culture attained the highest electricity generation (i.e., 320 mW/m2 power density and 3.19 A/m2 current density), chemical oxygen demand removal efficiency (91.15 ± 0.05%), and coulombic efficiency (54.81 ± 4.18%). In addition, the BES containing biofilms of the mixed culture achieved the highest Cu, Cr, and Cd removal efficiencies of 99.89 ± 0.07%, 99.59 ± 0.53%, and 99.91 ± 0.04%, respectively. The Cr6+ and Cu2+ in the simulated industrial wastewater were recovered via microbial electrochemical reduction as Cr3+ and Cu0, respectively. However, Cd2+ precipitated as Cd (OH)2 or CdCO3 on the surface of the cathodes. These results suggest that a mixed culture inoculum of Castellaniella sp. A5, Castellaniella sp. B3, and Castellaniella sp. A3 has great potential as a biocatalyst in BES for heavy metals recovery from industrial wastewater.


Assuntos
Fontes de Energia Bioelétrica , Metais Pesados , Eletricidade , Eletrodos , Águas Residuárias
2.
J Environ Manage ; 319: 115765, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35982566

RESUMO

The aim of this study was to explore the dynamic of microbial community and metabolic function in food waste composting amended with traditional Chinese medicine residues (TCMRs). Results suggested that TCMRs addition at up to 10% leads to a higher peak temperature (60.5 °C), germination index (GI) value (119.26%), and a greater reduction in total organic carbon (TOC) content (8.08%). 10% TCMRs significantly induced the fluctuation of bacterial community composition, as well as the fungal community in the thermophilic phase. The addition of 10% TCMRs enhanced the abundance of bacterial genera such as Acetobacter, Bacillus, and Brevundimonas, as well as fungal genera such as Chaetomium, Thermascus, and Coprinopsis, which accelerated lignocellulose degradation and humification degree. Conversely, the growth of Lactobacillus and Pseudomonas was inhibited by 10% TCMRs to weaken the acidic environment and reduce nitrogen loss. Metabolic function analysis revealed that 10% TCMRs promoted the metabolism of carbohydrate and amino acid, especially citrate cycle, glycolysis/gluconeogenesis, and cysteine and methionine metabolism. Redundancy analysis showed that the carbon to nitrogen (C/N) ratio was the most significant environmental factor influencing the dynamic of bacterial and fungal communities.


Assuntos
Compostagem , Microbiota , Eliminação de Resíduos , Bactérias/metabolismo , Carbono/metabolismo , Alimentos , Esterco , Medicina Tradicional Chinesa , Nitrogênio/metabolismo , Solo
3.
J Environ Manage ; 303: 114144, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839958

RESUMO

The purpose of this study was to find an economical and effective amendment for improving composting performance and product quality, as well as to analyze the microbial community succession in the whole phase of composting. Therefore, the effect of reusable amendment bamboo sphere on composting performance and microbial community succession during food waste composting was investigated. The results showed that 6% bamboo sphere treatment had the highest degree of polymerization (3.7) and humification index (0.18). Compared with control, 6% bamboo sphere amendment increased total nitrogen (TN), phosphorus (TP) and potassium (TK) contents by 13.61%, 19% and 17.42%, respectively. Furthermore, bamboo sphere enhanced bacterial-fungal diversity and improved microbial community composition by enhancing the relative abundance of thermo-tolerance and lignocellulolytic bacteria and fungi. The five most abundant genera in bamboo sphere composting comprised Bacillus (0-71.47%), Chloroplast-norank (0-47.17%), Pusillimonas (0-33.24%), Acinetobacter (0-27.98%) and unclassified Sphingobacteriaceae (0-22.62%). Linear discriminant analysis effect size showed that Firmicutes, Thermoascaceae and Actinobacteriota, which have a relationship with the decomposition of soluble organic matter and lignocellulose, were significantly enriched in bamboo sphere treatment. Canonical correspondence analysis illustrated that total organic carbon (TOC), TK, and TP were the most important environmental factors on microbial community succession in the two composting systems. Together these results suggest that bamboo sphere as a reusable amendment can shorten maturity period, improve humification degree, increase the contents of nutrient and contribute to the succession of microbial community during food waste composting. These findings provide a theoretical basis for improving the efficiency of food waste composting.


Assuntos
Compostagem , Microbiota , Eliminação de Resíduos , Alimentos , Esterco , Solo
4.
Microorganisms ; 12(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543636

RESUMO

Vermiculite is a clay mineral with unique physical properties that plays a significant role in plant cultivation, soil remediation, and solid waste management. In this research, we first explored how vermiculite-to-microbe interactions evolved during sludge-waste mushroom residue co-composting. Vermiculite's addition had a substantial impact on the microbial α and ß diversities, significantly changed the microbial community pattern, and strengthened the composting nutrient circulation through the formation of more specialist and generalist species. The microbial community characteristics exhibited common co-networks for resisting composting environment stresses. Vermiculite contributed to enhancing the keystone taxa Proteobacteria and Actinobacteriota and caused the ecological function network to diversify in the warming and maturation phases, with more complexity and tightness in the thermophilic phase (with super-generalist species existing). The enhanced microbial interactions induced by vermiculite possessed a greater capacity to facilitate the metabolisms of carbohydrates and amino acids and cellulolysis, thereby promoting composting humification, and nitrogen retention in the final compost and composting maturity. These findings are helpful for us to understand the biological process mechanisms of the effect of vermiculite additives on composting and contribute to the establishment of a theoretical framework for enhancing the microbial interactions in composting systems by adding vermiculite in practical applications.

5.
Bioresour Technol ; 363: 127923, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36096323

RESUMO

The objective of this work was to evaluate the fungal community assembly and function during food waste composting with Aneurinibacillus sp. LD3 (LD3) inoculant. Inoculation reduced the content of total organic carbon, moisture content, nitrate nitrogen, and nitrite nitrogen. The LD3 inoculant was able to drive the changes in the assembly of the fungal community. In particular, inoculation with LD3 not only increased the relative abundance of Ascomycota and Trichocomaceae_unclassified for lignocellulose degradation at the mesophilic and cooling stages but also reduced the relative abundances of the opportunistic human pathogen Candida. Saprotroph was the predominant fungal trophic mode in composting, and inoculation with LD3 has a better inactivation effect on animal and plant pathogenic fungi during composting. Furthermore, the variation of the fungal community after inoculation with LD3 was the largest explained by temperature (30.64%). These results implied that LD3 significantly regulated fungal composition and function of food waste composting.


Assuntos
Compostagem , Micobioma , Eliminação de Resíduos , Animais , Carbono , Alimentos , Humanos , Nitratos , Nitritos , Nitrogênio , Solo
6.
Chemosphere ; 307(Pt 3): 135859, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35987270

RESUMO

The aim of this study was to isolate thermotolerant alkali lignin-degrading bacteria and to investigate their degradation characteristics and application in food waste composting. Two thermotolerant alkali lignin-degrading bacteria isolates were identified as Bacillus sp. LD2 (LD2) and a novel species Aneurinibacillus sp. LD3 (LD3). Compared with strain LD2, LD3 had a higher alkali lignin degradation rate (61.28%) and ligninolytic enzyme activities, and the maximum lignin peroxidase, laccase, and manganese peroxidase activities were 3117.25, 1484.5, and 1770.75 U L-1, respectively. GC-MS analysis revealed that low-molecular-weight compounds such as 4'-hydroxy-3'-methoxy acetophenone, vanillic acid, 1-(4-hydroxy-3,5-dimethoxyphenyl), benzoic acid, and octadecanoic acid were formed in the degradation of alkali lignin by LD3, indicating the cleavage of ß-aryl ether, Cα-Cß bonds, and aromatic rings in lignin. Composting results showed that inoculating LD3 improved the degradation of organic matter by 20.11% and reduced the carbon-to-nitrogen (C/N) ratio (15.66). Additionally, a higher decrease in the content of lignocellulose was observed in the LD treatment. FTIR and 3D-EEM spectra analysis indicated that inoculating LD3 promoted the decomposition of easily available organic substances and lignocellulose and the formation of aromatic structures and humic acid-like substances. In brief, the thermotolerant lignin-degrading bacterium Aneurinibacillus sp. LD3 is effective in degrading lignin and improving the quality of composting.


Assuntos
Compostagem , Eliminação de Resíduos , Acetofenonas , Álcalis , Bactérias/metabolismo , Ácido Benzoico , Carbono/metabolismo , Éteres , Alimentos , Substâncias Húmicas , Lacase/metabolismo , Lignina/metabolismo , Nitrogênio/metabolismo , Ácido Vanílico
7.
Bioresour Technol ; 359: 127487, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35724906

RESUMO

This work explored the microbial mechanisms for the improvement of composting efficiency driven by thermotolerant lignin-degrading bacterium Aneurinibacillus sp. LD3 (LD3). Results showed that LD3 inoculant prolonged the thermophilic period by 4 days, improved the final content of humic acid, total phosphorus (TP), nitrogen, potassium and seed germination index. Inoculating LD3 enhanced the relative abundance of thermotolerant and phosphate-solubilizing microbes including the phyla of Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota, and the genus of Bacillus, Thermoactinomyces, and Pseudomonas. Metabolic function analysis showed that sequences involved in carbohydrate and amino acid metabolism were boosted, while sequences associated with human disease were reduced after inoculating LD3. Spearman correlation analysis revealed that Aneurinibacillus has a significant positive correlation with temperature, TP, Bacillus, and Thermoactinomyces. This study provides useful information for understanding the microbial mechanisms of LD3 promoting composting efficiency, and reveals the tremendous potential of LD3 in the resource utilization of organic solid wastes.


Assuntos
Bacillus , Compostagem , Bactérias , Humanos , Substâncias Húmicas , Esterco , Nitrogênio , Fósforo , Solo
8.
Sci Rep ; 11(1): 6611, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758257

RESUMO

In polluted groundwater, surface water, and industrial sites, chromium is found as one of the most common heavy metals, and one of the 20 main pollutants in China, which poses a great threat to the ecological environment and human health. Combining biological and chemical materials to treat groundwater contaminated by heavy metals is a promising restoration technology. In this research, Klebsiella variicola H12 (abbreviated as K. variicola) was found to have Cr(VI) reduction ability. A high-efficiency Klebsiella variicola H12-carboxymethyl cellulose (abbreviated as CMC)-FeS@biochar system was established for Cr(VI) removal from aqueous solution. The Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), X-ray photoelectron spectroscopy (XPS) results indicated that CMC-FeS was successfully loaded onto the surface of biochar, and K. variicola H12 grew well in the presence of CMC-FeS@biochar with microbial biomass up to 4.8 × 108 cells mL-1. Cr(VI) removal rate of CMC-FeS@biochar system, K. variicola H12 system and K. variicola H12 + CMC-FeS@biochar system were 61.8%, 82.2% and 96.6% respectively. This study demonstrated K. variicola H12-CMC-FeS@biochar system have potential value for efficient removal of Cr(VI) from Cr(VI)-polluted groundwater.


Assuntos
Cromo/química , Água Subterrânea/química , Klebsiella/metabolismo , Poluentes Químicos da Água/química , Purificação da Água , Adsorção , Fenômenos Químicos , Água Subterrânea/análise , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
9.
Microorganisms ; 8(4)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235603

RESUMO

Many efforts have focused on the adsorption of metals from contaminated water by microbes. Synechococcus PCC7002, a major marine cyanobacteria, is widely applied to remove metals from the ocean's photic zone. However, its ability to adsorb cesium (Cs) nuclides has received little attention. In this study, the biosorption behavior of Cs(I) from ultrapure distilled water by living Synechococcus PCC7002 was investigated based on kinetic and isotherm studies, and the biosorption mechanism was characterized by Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry, and three-dimensional excitation emission matrix fluorescence spectroscopy. Synechococcus PCC7002 showed extremely high tolerance to Cs ions and its minimal inhibitory concentration was 8.6 g/L. Extracellular polymeric substances (EPS) in Synechococcus PCC7002 played a vital role in this tolerance. The biosorption of Cs by Synechococcus PCC7002 conformed to a Freundlich-type isotherm model and pseudo-second-order kinetics. The binding of Cs(I) was primarily attributed to the extracellular proteins in EPS, with the amino, hydroxyl, and phosphate groups on the cell walls contributing to Cs adsorption. The biosorption of Cs involved two mechanisms: Passive adsorption on the cell surface at low Cs concentrations and active intracellular adsorption at high Cs concentrations. The results demonstrate that the behavior and mechanism of Cs adsorption by Synechococcus PCC7002 differ based on the Cs ions concentration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa